Skip to content
Renewable Carbon Publications - LogoRenewable Carbon Publications - Logo
  • Publications
  • Contact
0

No products in the cart.

  • Renewable Carbon
    • Renewable Carbon
    • Events
    • Publications
    • Graphics
    • News
    • Business Directory
    • Newsletter
    • nova-Institute
  • Publications
  • Contact

Renewable Carbon Publications - LogoRenewable Carbon Publications - Logo
0

No products in the cart.

  • Renewable Carbon Publications
  • Publication types
  • Graphics
Grid view List view

Showing 1–20 of 214

  • Download Statistics
  • Direct Download
    Newbio based polymers – evolution of worldwide production capacities from 2018 to 2030 (png) (copy)

    Global Production Capacities of Bio-based Polymers per region 2025 (PNG)

    Markets & Economy

    1 Page
    7 Downloads

    7 Downloads  

    2026-02

    FREE

    Free Shipping
     

    7
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    Newshares of produced bio based polymers per market sections (png)

    Bio-based non biodegradable polymers Evolution of Capacities (PNG)

    Markets & Economy

    1 Page
    3 Downloads

    3 Downloads  

    2026-02

    FREE

    Free Shipping
     

    3
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    Newbio based non biodegradable polymers evolution of capacities (png) (copy)

    Bio-based biodegradable polymers-Evolution Capacities to 2030 (PNG)

    Markets & Economy

    1 Page
    3 Downloads

    3 Downloads  

    2026-02

    FREE

    Free Shipping
     

    3
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    Newbio based biodegradable polymers evolution capacities to 2030 (png) (copy)

    Bio-based building blocks – Evolution of capacities to 2030 (PNG)

    Markets & Economy

    1 Page
    3 Downloads

    3 Downloads  

    2026-02

    FREE

    Free Shipping
     

    3
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    New(png)

    Plastics Production From 1950 to 2024 (PNG)

    Markets & Economy

    1 Page
    3 Downloads

    3 Downloads  

    2026-02

    FREE

    Free Shipping
     

    3
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    Newplastics production from 1950 to 2024 (png) (copy)

    Bio-based Polymer Capacities and Production Worldwide 2025 (PNG)

    Markets & Economy

    1 Page
    4 Downloads

    4 Downloads  

    2026-02

    FREE

    Free Shipping
     

    4
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    Newbio based polymers & plastics production 2024 worldwide (png)

    Bio-based Polymers & Plastics Production 2024 Worldwide (PNG)

    Markets & Economy

    1 Page
    5 Downloads

    5 Downloads  

    2026-02

    FREE

    Free Shipping
     

    5
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    Newbio based polymers & plastics production 2024 worldwide (png) (copy)

    Biomass Utilisation Worldwide (PNG)

    Markets & Economy

    1 Page
    6 Downloads

    6 Downloads  

    2026-02

    FREE

    Free Shipping
     

    6
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    New(png)

    Polymers and Bio-Based Shares Worldwide (2020–2025) (PNG)

    Markets & Economy

    1 Page
    8 Downloads

    8 Downloads  

    2026-02

    FREE

    Free Shipping
     

    8
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    Newpolymers and bio based shares worldwide (2020–2025) (png) (copy)

    Bio-based polymers – Evolution of worldwide production capacities from 2018 to 2030 (PNG)

    Markets & Economy

    1 Page
    5 Downloads

    5 Downloads  

    2026-02

    FREE

    Free Shipping
     

    5
    Downloads

    Direct Download

    The new high-level report “Bio‑based Building Blocks and Polymers – Global Capacities, Production and Trends 2025–2030”, compiled by the international biopolymer expert group of the nova-Institute, provides an overview of the capacities and production data of 17 commercially available bio‑based building blocks and polymers in 2025, along with a forecast for 2030. Detailed market data is available via individual workshops and webinars with the biopolymer experts. This data includes capacity development from 2018 to 2030, production data for the years 2024 and 2025, and analyses of market developments per building block, polymer and producers, as well as a statistical analysis of “Mass Balance and Attribution (MBA)” products available worldwide.

    2025 was a solid year for bio-based polymers, with an expected overall CAGR of 11 % to 2030 and an average capacity utilisation rate of 86 %. Overall, bio-based non-biodegradable polymers have larger installed capacities and higher utilisation rates than bio-based biodegradable polymers. While 58 % of the total installed capacities are from bio-based non-biodegradable polymers, 42 % are bio-based biodegradable polymers. Bio-based non-biodegradable have an average utilisation rate of 90 % whereas bio-based biodegradable polymers have an average utilisation rate of 81 %. The expected CAGR for both, bio-based non-biodegradable and biodegradable is similar with 10 % and 11 %, respectively.

    Epoxy resin and PUR production is growing moderately at 9 and 8 %, respectively, while PE and PP are increasing by 17 % and 94 %. Also, capacities for the biodegradables PHA and PLA are expected to increase until 2030 by 49 % and 16 %, respectively. Commercial newcomers such as casein polymers and PEF have increased production capacity and are expected to continue to grow significantly until 2030.

    DOI No.: https://doi.org/10.52548/PILO4285

  • Direct Download
    eu27+3 advanced recycling waste input capacity 2024 (jpg)

    EU27+3 Advanced Recycling Waste Input Capacity 2024 (JPG)

    Technology

    1 Page
    15 Downloads

    15 Downloads  

    2025-12

    FREE

    Free Shipping
     

    15
    Downloads

    Direct Download

    Installed input capacities for different advanced recycling technologies in EU27+3 for the year 2024.

  • Direct Download
    eu27+3 advanced recycling waste input capacity 2024 (jpg)

    EU27+3 Advanced Recycling Product Output Capacity 2024 (JPG)

    Technology

    1 Page
    11 Downloads

    11 Downloads  

    2025-12

    FREE

    Free Shipping
     

    11
    Downloads

    Direct Download

    Installed advanced recycling output capacities for different products in EU27+3 for the year 2024.

  • Direct Download
    eu27+3 advanced recycling waste input capacity 2024 (jpg)

    Installed and Future Advanced Recycling Production Capacities between 2018-2031 for EU27+3 (JPG)

    Technology

    1 Page
    20 Downloads

    20 Downloads  

    2025-12

    FREE

    Free Shipping
     

    20
    Downloads

    Direct Download

    Installed and future production capacities for advanced recycling of products in the EU27+3 that can be used to produce new polymers and plastics.

  • Direct Download
    eu27+3 advanced recycling waste input capacity 2024 (jpg)

    Number of advanced recycling facilities installed in the EU-27+3 in 2024 (JPG)

    Technology

    1 Page
    11 Downloads

    11 Downloads  

    2025-12

    FREE

    Free Shipping
     

    11
    Downloads

    Direct Download

    Overview showing all installed and running advanced recycling plants in the EU27+3 in 2024.

  • Direct Download
    percentage change in the carbon footprint of olefins and derivatives (png) (copy)

    Percentage Change in the Carbon Footprint of Plastics (PNG)

    Sustainability & Health

    1 Page
    38 Downloads

    38 Downloads  

    2025-10

    FREE

    Free Shipping
     

    38
    Downloads

    Direct Download
  • Direct Download
    percentage change in the carbon footprint of aromatics and derivatives (png)

    Percentage Change in the Carbon Footprint of Aromatics and Derivatives (PNG)

    Sustainability & Health

    1 Page
    13 Downloads

    13 Downloads  

    2025-10

    FREE

    Free Shipping
     

    13
    Downloads

    Direct Download
  • Direct Download
    percentage change in the carbon footprint of aromatics and derivatives (png) (copy)

    Percentage Change in the Carbon Footprint of fossil-based Feedstocks (PNG)

    Sustainability & Health

    1 Page
    28 Downloads

    28 Downloads  

    2025-10

    FREE

    Free Shipping
     

    28
    Downloads

    Direct Download
  • Direct Download
    percentage change in the carbon footprint of fossil based feedstocks (png) (copy)

    Percentage Change in the Carbon Footprint of Olefins and Derivatives (PNG)

    Sustainability & Health

    1 Page
    13 Downloads

    13 Downloads  

    2025-10

    FREE

    Free Shipping
     

    13
    Downloads

    Direct Download
  • Direct Download
    (png)

    Benefits of Using First-Generation Biomass for Food, Fuel, Materials and Chemicals in Europe (PNG)

    Policy, Sustainability & Health

    1 Page
    111 Downloads

    111 Downloads  

    2025-09

    FREE

    Free Shipping
     

    111
    Downloads

    Direct Download
  • Direct Download
    benefits of using first generation biomass for food, fuel, materials and chemicals in europe (png) (copy)

    Co-production per Tonne Termantable Sugars (PNG)

    Policy, Sustainability & Health

    1 Page
    21 Downloads

    21 Downloads  

    2025-09

    FREE

    Free Shipping
     

    21
    Downloads

    Direct Download

Renewable Carbon Types

Publications

Topics

  • 1
  • 2
  • 3
  • …
  • 11

nova-Logo
contact@nova-institut.de
www.nova-institute.eu

nova-Institut GmbH
Leyboldstr. 16
50354 Hürth / Germany

  • Renewable Carbon
  • Events
  • Publications
  • Graphics
  • News
  • Business Directory
  • Newsletter
  • nova-Institute
  • My account
  • Legal Information
  • Terms and Conditions
  • Data protection regulation
© 2026 nova-Institut GmbH
Renewable Carbon Publications - Logo

Login

Lost your password?