International research team seeks more efficient biomass refinement processes

Researchers from across the world plan to mimic the chemistry of the brown rot fungus to improve biorefining processes

BLACKSBURG, Va., July 7, 2015 – Researchers from across the world, including from Virginia Tech, plan to mimic the chemistry of the brown rot fungus to improve biorefining processes. BioMim, a $4 million, four-year project funded by the Research Council of Norway with industrial partners Borregaard and Kebony, will also seek better ways to protect wood products.

“A key part of the work will focus on the breakdown of the cellulose portion of biomass to produce component sugars that can then be fermented to biofuels,” said project leader Gry Alfredsen of the Norwegian Institute of Bioeconomy Research. “But today, in addition to alcohols, fermentation processes can generate a variety of platform chemicals, such as for use in making plastics and resins, so this will also be a focus.”

Wood and other biomass sources consist of two basic chemicals, cellulose and lignin — the two most abundant natural polymers on Earth.

“One of the key problems in current biorefinery systems is finding a way to disentangle the lignin, which, at the nanoscale, forms a tight plastic coating around the cellulose fibers, to thus free up the cellulose for a variety of applications,” said Barry Goodell, professor of sustainable biomaterials in Virginia Tech’s College of Natural Resources and Environment.

The BioMim project will explore two processes. The first is a technology developed by Goodell that borrows from the processes used by brown rot fungi that are commonly found breaking down woody debris on the forest floor — and sometime also damaging homes, decks, and other structural products. The resulting catalytic process for freeing cellulose from lignin has now been demonstrated at pilot scale. The BioMim team will expand on this technology and explore how it can be used efficiently in large-scale biorefineries.

The second part of the process uses a newly discovered enzymatic system discovered by the group of team member Vincent Eijsink, professor at the Norwegian University of Life Sciences. This new enzyme system may permit further deconstruction of the cellulose portion of the wood biomass once freed from the lignin.

One of the BioMim collaborators who is producing the enzyme is Makoto Yoshida, associate professor from Tokyo University of Agriculture and Technology. Yoshida began a nine-month sabbatical in Goodell’s lab this month. “We will combine the catalytic chemistries with the enzyme system to test the system as a whole,” Goodell said.

Alfredsen was also a visiting scientist on sabbatical in Goodell’s laboratory at Virginia Tech two years ago. She had been following Goodell’s research for some time, and the two recognized the value of a combined international research approach to solve a global sustainability problem on the better utilization of biomass resources. The Norwegian funding agency was willing to fund research innovation in this area.

While freeing up cellulose for enhanced utilization is a critical objective of the BioMim project, the other component of wood — lignin — also has many uses, such as emulsions, binders, and micronutrients, with potential market value in excess of $200 billion, according to the Frost and Sullivan market research group. Borregaard, which has plants in Wisconsin and Florida as well as in Norway and worldwide, is a global leader in the production of lignin-based products and has great interest in how the BioMim project team can generate lignin in a more efficient manner and generate new types of lignin for products, said Goodell.

Kebony, based in Skien, south of Oslo, is particularly interested in protecting wood for long-lasting wood products.

The College of Natural Resources and Environment at Virginia Tech, which consistently ranks among the top three programs of its kind in the nation, advances the science of sustainability. Programs prepare the future generation of leaders to address the complex natural resources issues facing the planet. World-class faculty lead transformational research that complements the student learning experience and impacts citizens and communities across the globe on sustainability issues, especially as they pertain to water, climate, fisheries, wildlife, forestry, sustainable biomaterials, ecosystems, and geography. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

 

Source

Virginia Tech News, 20-07-07.

Supplier

Borregaard
Frost & Sullivan
Kebony
Norwegian Institute of Bioeconomy Research (NIBIO)
Norwegian University of Life Sciences
The Research Council of Norway
University of Tokyo
Virginia Tech

Share

Renewable Carbon News – Daily Newsletter

Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals

Subscribe