Fast-growth cyanobacteria have allure for biofuel, chemical production

When the going gets tough, the tough get growing

20160726153635840
Synechococcus 7002 cells under typical light conditions (left) and under bright light for a long period of time (right). The cells on the right are much larger to accommodate additional cell-synthesis machinery required under high light-energy conditions. Courtesy of mBio – Zoom –

While relentless bright light brings many forms of cyanobacteria to their knees — figuratively, of course — Synechococcus sp. PCC 7002 does the opposite, thriving and growing at a rate that far outpaces most of its peers. That makes the organism, commonly called a form of blue-green algae, an attractive target for scientists and engineers trying to create better, less expensive biofuels or develop tools for churning out custom chemicals.

Now researchers have figured out why Synechococcus 7002 is so robust. The organism triples in size to accommodate a rapid expansion of the cellular machinery it uses to build proteins, the workhorses of cells. The organism flourishes under intense light by using the energy to keep growing.

The findings by scientists at the U.S. Department of Energy’s Pacific Northwest National Laboratory, in collaboration with scientists from several other institutions, appear July 26 in the online journal mBio.

27971114684_9bf2a85d0a
Synechococcus 7002 in a bioreactor – Zoom –

Of sunlight and Synechococcus

Cyanobacteria capture the Sun’s energy and use it to create food for themselves, all while drawing in carbon dioxide and giving off oxygen. The single-celled organisms have been on Earth for billions of years and play a critical role in Earth’s climate. Scientists are trying to take advantage of these natural processes to create new forms of energy and sustainable bioproducts.

“These organisms are the major pathway for capturing solar energy and carbon dioxide on our planet,” said PNNL scientist Alexander Beliaev, one of two corresponding authors.

When light comes in too fast and too intensely for most cyanobacteria, they slow their growth, using their resources instead to repair damaged cells.

But Synechococcus sp. PCC 7002 is adept at using the extra light, doing chemistry on the fly and putting the extra energy to good use — toward rapid growth. The organism typically doubles in size in less than 2 hours, compared to other species which typically double between 7 to 12 hours.

That may not sound like much. But if you start with a one-foot by one-foot plot of blue-green algae, after 48 hours the standard organism would cover the floor of a small office, while the fast-growth one would cover more than 600 football fields. That’s an attractive difference for scientists trying to grow the organism as a source of fuel. The greater productivity means that more fuel and more chemical products could be produced more quickly compared to other systems.

“Everyone’s question is: How can we make affordable fuels and chemicals faster? It’s a critical choke point for renewable biofuel processes,” said Hans Bernstein, also a corresponding author. Fuels made of biological materials — such as ethanol — currently make up a small slice of fuels used today, largely because they are more expensive than traditional fuels. The new research is one step toward making a wider range of biofuels less costly and more attractive.

Expanding the cellular machinery

The team led by Beliaev and Bernstein set out to understand the capability of Synechococcus sp. PCC 7002 for fast growth. They drew upon the resources of EMSL, the Environmental Molecular Sciences Laboratory — a Department of Energy user facility — to ferret out the molecular signals that underpin the organism’s ability to stay productive even under bright light, using EMSL’s capabilities to determine which genes were active.

Under bright light conditions where other cyanobacteria normally slow down, the team saw no hint of slowdown in the organism. Instead, the scientists demonstrated that the organism has the wherewithal to expand very rapidly, building molecular machinery quickly to convert light energy and carbon dioxide into new growth.

The scientists showed that the organism activates more of the genetic signals involved in creating the raw materials involved in building proteins in the cell. The activity of genes involved in building proteins, harvesting light, converting sunlight into food and taking up carbon dioxide all increased markedly. To accommodate the increased activity, the cells triple in size.

It’s like a factory with the capability of expanding its assembly lines instantaneously to accommodate an increased flow of raw materials coming into the manufacturing area. If the electrons that provide energy aren’t used immediately, they can get in the way and gunk up operations, but if they’re put to good use, more of the desired product rolls off the lines quickly and efficiently.

“This organism responds to very high light levels by fixing carbon dioxide and upregulating machinery to make biomass,” said Bernstein. “It’s building proteins as fast as it can for rapid growth, and that requires additional space.”

The team included scientists from PNNL, the Colorado School of Mines, Penn State, Montana State University, and Purdue. The work was funded by the Department of Energy Office of Science.

 
Reference: Hans C. Bernstein, Ryan S. McClure, Eric A. Hill, Lye Meng Markillie, William B. Chrisler, Margie F. Romine, Jason E. McDermott, Matthew C. Posewitz, Donald A. Bryant, Allan E. Konopka, James K. Fredrickson, Alexander S. Beliaev, Unlocking the Constraints of Cyanobacterial Productivity: Acclimations Enabling Ultra-Fast Growth, mBio, July 26, 2016, DOI: 10.1128/mBio.00949-16.

 

About EMSL

EMSL, the Environmental Molecular Sciences Laboratory, is a DOE Office of Science User Facility. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies.

About PNNL

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America’s most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy’s Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time.

Author

Tom Rickey

Source

PNNL, press release, 2016-07-28.

Supplier

Colorado School of Mines
Environmental Molecular Sciences Laboratory (EMSL)
Montana State University
Pacific Northwest National Laboratory PNNL
Pennsylvania State University
Purdue University
US Department of Energy (DoE)

Share

Renewable Carbon News – Daily Newsletter

Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals

Subscribe