

>> Download this market research report on Reportlinker.com

Bioplastics: Technologies and Global Markets

Published on September 2010

Report Summary

Bioplastics will grow at a significant pace over the next 5 years. The total worldwide use of bioplastics is valued at 571,712 metric tons in 2010. This usage is expected to grow at a 41.4% compound annual growth rate (CAGR) from 2010 through 2015, to reach 3.230.660 metric tons in 2015.

By 2010, ready access to crops such as soybeans, corn, and sugarcane moved the United States strongly into bioplastics. North American usage is estimated at 258,180 metric tons in 2010 and is expected to increase at a 41.4% compound annual growth rate (CAGR) to reach 1,459,040 metric tons in 2015.

Use of bioplastics got off to a faster start in Europe than in the United States. European usage is now reported at 175,320 metric tons in 2010 and is expected to increase at a 33.9% compound annual growth rate (CAGR) to reach 753,760 metric tons in 2015.

INTRODUCTION

Market forces, especially increasing focus on environmental threats such as global warming and disposal of products containing toxic materials, have strongly driven development and early use of bioplastics.

Bioplastics are plastics that are made from renewable resources, such as food crops or biomass. The terms 'bioplastics' and 'biodegradable plastics' have been used interchangeably, but there is a difference between the two types of polymers.

BCC Research defines a fully biodegradable polymer as a polymer that is completely converted by microorganisms to carbon dioxide, water, and humus. In the case of anaerobic biodegradation, carbon dioxide, methane, and humus are the degradation products. Some, but not all, bioplastics are also biodegradable.

STUDY GOALS AND OBJECTIVES

Goals and objectives of this study include:

Identifying trends that will affect use of bioplastics and their major end-use application markets

Reviewing, analyzing, and forecasting specific end markets for bioplastics by material types, with sections devoted to each type of renewable-sourced plastic

Analyzing and forecasting market developments from the viewpoint of major applications for bioplastics, that is, packaging, automotive, electrical/electronic, medical, building, and construction and others

Profiling many of the most important suppliers of bioplastics, including resin roducers and compounders

REASONS FOR DOING THE STUDY

The rapid emergence of bioplastics is one of the major materials stories of the period starting in 2010. Once billed as biodegradable plastics, the theme for renewably sourced plastics has shifted dramatically in recent years to sustainability. In order to maximize market impact, there is now a growing trend to compound bio-based plastics with oil-based plastics to extend their reach into markets for durable products used in cars, cell phones, and elsewhere. The focus has shifted to total carbon footprint, and away from

contribution to the solid waste stream.

INTENDED AUDIENCE

Due to the growing concern about climate change and negative health impacts of many existing materials, this report will be of interest to anyone who sells, designs, or manufactures products that are, or could be, made from polymeric materials. This report will also be of value to individuals who are helping to establish public policy about issues ranging from limits on use of plastics packaging to potential limits on use of vinyl compounds in medical applications.

This report will be of value to technical and business personnel in the following areas, among others:

Personnel in end-user companies in a wide range of industries from retail bags to solar cell manufacturing

Marketing and management personnel in companies that produce, market, and sell any type of plastics

Companies involved in the design and construction of process plants that manufacture resins and products made from the resins Companies that supply, or want to supply, equipment and services to plastics companies

Financial institutions that supply money for such facilities and systems, including banks, merchant bankers, venture capitalists, and others

Investors in both equity and fixed-income markets; the fate of the plastics very much weighs on the values of the publicly traded stocks of companies such as Eastman, Bayer, DSM, and DuPont

Personnel in government at many levels, ranging from federal to state and local authorities, many of whom are involved in trying to ensure public health and safety; the report also will be of interest to military scientists studying new packaging and equipment.

SCOPE OF REPORT

The focus of this report is plastics that are made from renewable resources such as biomass or food crops. There is even some potential development of bioplastics from animal resources. Plastics that may be potentially made from waste carbon dioxide are reviewed because of their potential impact on bioplastics, but their data is not included in the forecasts presented here. Bioplastics are further defined here as polymer materials that are produced by synthesizing, either chemically or biologically, materials which contain renewable organic materials. Natural organic materials that are not chemically modified, such as wood composites, are excluded. The report includes use of renewable resources to create monomers that replace petroleum-based monomers, such as polyester and polyethylene that use feedstocks made from sugarcane. Ethanol, a major product in Brazil, is one small chemical step from ethylene.

The focal point is on the following resin chemistries, including:

Polylactic acid

Thermoplastic starch

Bio-polyamides (nylons)

Polyhydroxyalkanoates (PHA)

Bio-polyols

Cellulosics

Bio-polytrimethylene terephthalate (PTT)

Bio-polyethylene

Bio-bottle-grade polyethylene terephthalate (PET)

Biodegradable and photodegradable polymers made from petrochemical feedstocks are not included.

Other renewable resin chemistries are also covered but in less detail because their roles are not as well developed. They include collagen and chitosan.

METHODOLOGY AND INFORMATION SOURCES

Find Industry reports, Company profiles and Market Statistics

Both primary and secondary research methodologies were used in preparing this report. Extensive searches were made of the literature and the Internet, including many of the leading trade publications, as well as technical compendia, government publications, and information from trade and other associations. Many background sources were used to develop chemical and property descriptions, but all forecasts are solely attributable to BCC Research.

AUTHOR'S CREDENTIALS

Douglas A. Smock was the chief editor of Plastics World Magazine from 1986 to 1994 at Cahners Publishing Co. He also served as a senior editor of Modern Plastics at McGraw-Hill Publishing Co., associate publisher and editorial director of Modern Mold & Tooling at the McGraw-Hill Publishing Co., and chief editor of Purchasing Magazine at Reed Business Information from 2000 to 2004. Smock has been a contributing editor at Design News since 2006 in addition to serving as a materials' analyst at BCC Research. At RBI-US, Smock also served as co-chairman of the corporate editorial board. He is the coauthor of Straight to the Bottom Line and On-Demand Supply Management, two leading books in the field of supply management. He is the former editor of BCC Research's newsletter, High Tech Ceramic News. Smock received a bachelor's degree in economics from Case Western Reserve University, Cleveland, Ohio.

Table of Content

Chapter- 1: INTRODUCTION -- Complimentary

STUDY GOALS AND OBJECTIVES 1
REASONS FOR DOING THE STUDY 1
INTENDED AUDIENCE 2
SCOPE OF REPORT 2
METHODOLOGY AND INFORMATION SOURCES 3
AUTHOR'S CREDENTIALS 3
RELATED BCC REPORTS 4
BCC ONLINE SERVICES 4
DISCLAIMER 4

Chapter-2: SUMMARY

SUMMARY TABLE USE OF BIOPLASTICS BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 5 SUMMARY FIGURE USE OF BIOPLASTICS BY GLOBAL REGION, 2008-2015 (METRIC TONS) 6 SUMMARY (CONTINUED) 7

Chapter-3: THE BIOPLASTICS INDUSTRY

SUMMARY 8
HISTORY OF BIOPLASTICS 9
HISTORY OF BIOPLASTICS (CONTINUED) 10

Chapter-4: PROS AND CONS OF BIOPLASTICS

THE CASE FOR BIOPLASTICS 11
THE CASE FOR BIOPLASTICS (CONTINUED) 12
THE CASE FOR BIOPLASTICS (CONTINUED) 13
THE CASE AGAINST BIOPLASTICS 14

THE CASE AGAINST BIOPLASTICS (CONTINUED) 15 THE CASE AGAINST BIOPLASTICS (CONTINUED) 16

Chapter-5: BIOPLASTICS BY RESIN TYPE

POLYLACTIC ACID POLYMERS (PLA) 17

CHEMISTRY 17

PRODUCERS 17

TABLE 1 GLOBAL PLA SUPPLIERS 18

TABLE 1 (CONTINUED) 19

PRODUCTION 19

TABLE 2 USE OF PLA BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 20

FIGURE 1 USE OF PLA BY GLOBAL REGION, 2008-2015 (METRIC TONS) 20

PROPERTIES 21

Properties (Continued) 22

PROCESSING 23

Modifications 23

APPLICATIONS 24

TABLE 3 GLOBAL DEMAND FOR POLYLACTIC ACID BY APPLICATION, THROUGH 2015 (METRIC TONS) 24

FIGURE 2 GLOBAL DEMAND FOR POLYLACTIC ACID BY APPLICATION, 2008-2015 (METRIC TONS) 25

Food Packaging 25

Thermoformed Packaging 26

Electronics 26

Bottles 27

Automotive 27

Automotive (Continued) 28

Other Potential Applications 29

COMPOUNDING 29

Blends 29

Additives 30

Other Compounds 31

Other Compounds (Continued) 32

Other Compounds (Continued) 33

ENVIRONMENTAL ISSUES 34

Biodegradability 34

Recycling 34

Recycling (Continued) 35

SELLING PRICES 36

NEW DEVELOPMENTS 36

STARCH-BASED PLASTICS 37

CHEMISTRY 38

PRODUCERS 38

TABLE 4 GLOBAL STARCH POLYMER PRODUCERS 39

PRODUCTION 40

TABLE 5 USE OF STARCH-BASED PLASTICS BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 40

FIGURE 3 USE OF STARCH-BASED PLASTICS BY GLOBAL REGION, 2008-2015 (METRIC TONS) 41

ENVIRONMENTAL ISSUES 42

Biodegradability 42

Recyclability 42

APPLICATIONS 42

TABLE 6 GLOBAL DEMAND FOR THERMOPLASTIC STARCH BY APPLICATION, THROUGH 2015 (METRIC TONS) 43 FIGURE 4 GLOBAL DEMAND FOR THERMOPLASTIC STARCH BY APPLICATION, 2008-2015 (METRIC TONS) 43

PACKAGING 44

Food Serviceware 45

Furniture 45

TABLE 7 TYPES OF PRODUCTS MADE FROM STARCH POLYMERS 45

Agriculture 45

COMPOUNDING 46

Blends 46

Polyvinyl Alcohol'Starch Blends 47

Applications of Thermoplastic Starch (TPS)/PVOH Blends 47

NEW DEVELOPMENTS 47

New Developments (Continued) 48

POLYHYDROXYALKANOATES (PHA) 49

CHEMISTRY 49

PRODUCERS 49

TABLE 8 GLOBAL PHB SUPPLIERS 50

TABLE 8 (CONTINUED) 51

PRODUCTION 52

TABLE 9 USE OF PHA BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 53

FIGURE 5 USE OF PHA BY GLOBAL REGION, 2008-2015 (METRIC TONS) 53

PROPERTIES 54

PROCESSING 54

ENVIRONMENTAL ISSUES 55

Biodegradabaility 55

Recycling 55

APPLICATIONS 55

TABLE 10 GLOBAL DEMAND FOR PHA BY APPLICATION, THROUGH 2015 (METRIC TONS) 56

FIGURE 6 GLOBAL DEMAND FOR PHAS BY APPLICATION, THROUGH 2015 (METRIC TONS) 57

Food Packaging 57

Bath Products 57

Other Potential Applications 58

SUBSTITUTION POTENTIAL 58

COMPOUNDING 58

Use of Blends 58

Additives for PHA 59

SELLING PRICES 59

PBS-TYPE POLYESTERS 59

CHEMISTRY 59

PRODUCERS 59

TABLE 11 GLOBAL SUPPLIERS OF BIO PBS 60

Producers (Continued) 61

PRODUCTION 62

TABLE 12 USE OF PBS BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 62

FIGURE 7 USE OF PBS BY GLOBAL REGION, 2008 2015 (METRIC TONS) 63

PROPERTIES 63

PROCESSING 63

APPLICATIONS 63

TABLE 13 GLOBAL DEMAND FOR PBS BY APPLICATION, THROUGH 2015 (METRIC TONS) 64

FIGURE 8 GLOBAL DEMAND FOR PBS BY APPLICATION, THROUGH 2015 (METRIC TONS) 65

Find Industry reports, Company profiles and Market Statistics

ReportLinker

Packaging 65

Automotive 65

Furniture 66

NEW DEVELOPMENTS 66

BIO-BASED POLYAMIDES 66

CHEMISTRY 67

PRODUCERS 67

TABLE 14 GLOBAL BIO-POLYAMIDE SUPPLIERS 67

PRODUCTION 68

TABLE 15 USE OF BIO-POLYAMIDES BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 68

FIGURE 9 USE OF BIO-POLYAMIDES BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 69

PROPERTIES 70

PROCESSING 70

APPLICATIONS 71

TABLE 16 GLOBAL DEMAND FOR BIO-POLYAMIDES BY APPLICATION, THROUGH 2015 (METRIC TONS) 71

FIGURE 10 GLOBAL DEMAND FOR BIO-POLYAMIDES BY APPLICATION, 2008-2015 (METRIC TONS) 71

Automotive 72

Electrical/Electronic 72

Sporting Goods 73

Oil Country Goods 73

Other Potential Applications 73

ENVIRONMENTAL ASPECTS 73

NEW DEVELOPMENTS 74

PTT-TYPE POLYESTERS 74

CHEMISTRY 75

PRODUCERS 75

TABLE 17 GLOBAL SUPPLIERS 75

PRODUCTION 75

TABLE 18 USE OF BIO-PTT BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 76

FIGURE 11 USE OF BIO-PTT BY GLOBAL REGION, 2008-2015 (METRIC TONS) 76

PROPERTIES 77

APPLICATIONS 77

TABLE 19 GLOBAL DEMAND FOR BIO-PTT BY APPLICATION, THROUGH 2015 (METRIC TONS) 78

FIGURE 12 GLOBAL DEMAND FOR BIO-PTT BY APPLICATION, 2008-2015 (METRIC TONS) 78

ENVIRONMENTAL ISSUES 79

BIO-BASED POLYURETHANE 79

CHEMISTRY 80

PRODUCERS 80

Producers (Continued) 81

TABLE 20 GLOBAL BIO-POLYOL SUPPLIERS 82

PRODUCTION 83

TABLE 21 USE OF BIO-POLYOLS BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 83

TABLE 21 (CONTINUED) 84

FIGURE 13 USE OF BIO-POLYOLS BY GLOBAL REGION, 2008-2015 (METRIC TONS) 84

PROPERTIES 85

APPLICATIONS 85

TABLE 22 GLOBAL DEMAND FOR BIO-POLYOLS BY APPLICATION, THROUGH 2015 (METRIC TONS) 86

FIGURE 14 GLOBAL DEMAND FOR BIO-POLYOLS BY APPLICATION, THROUGH 2015 (METRIC TONS) 86

Applications (Continued) 87

ENVIRONMENTAL ISSUES 88

NEW DEVELOPMENTS 89

CELLULOSICS 89

CHEMISTRY 89

PRODUCERS 90

TABLE 23 GLOBAL SUPPLIERS OF CELLULOSE PLASTIC 90

PRODUCTION 91

TABLE 24 USE OF CELLULOSIC PLASTICS BY GLOBAL REGION, THROUGH 2015 (METRIC TONS) 91

FIGURE 15 USE OF CELLULOSIC PLASTICS BY GLOBAL REGION, 2008-2015 (METRIC TONS) 92

PROPERTIES 92

APPLICATIONS 93

TABLE 25 GLOBAL DEMAND FOR CELLULOSIC PLASTICS BY APPLICATION, THROUGH 2015 (METRIC TONS) 94

FIGURE 16 GLOBAL DEMAND FOR CELLULOSIC PLASTICS BY APPLICATION, 2008-2015 (METRIC TONS) 94

ENVIRONMENTAL ISSUES 95

NEW DEVELOPMENTS 96

OTHER TYPES OF BIOPLASTICS 96

BIO-BASED POLYESTER 96

TABLE 26 GLOBAL DEMAND FOR OTHER BIOPLASTICS BY APPLICATION, THROUGH 2015 (METRIC TONS) 97

FIGURE 17 GLOBAL DEMAND FOR OTHER BIOPLASTICS BY APPLICATION, 2008-2015 (METRIC TONS) 98

BIO-BASED POLYETHYLENE 99

TABLE 27 GLOBAL DEMAND FOR OTHER BIOPLASTICS BY APPLICATION, THROUGH 2015 (METRIC TONS) 100

FIGURE 18 GLOBAL DEMAND FOR OTHER BIOPLASTIC BY APPLICATION, 2008-2015 (METRIC TONS) 100

ELASTOMERS 101

ALIPHATIC POLYETHYLENE CARBONATE (APEC) 101

GLOBAL DEMAND 102

TABLE 28 GLOBAL DEMAND FOR OTHER BIOPLASTICS BY REGION, THROUGH 2015 (METRIC TONS) 102

FIGURE 19 GLOBAL DEMAND FOR OTHER BIOPLASTICS BY REGION, 2008-2015 (METRIC TONS) 102

ANIMAL-BASED FEEDSTOCKS 103

Collagen 103

Chitosan 104

CARDANOL-CELLULOSE 105

KERATIN 106

Chapter-6: BIOPLASTIC PROCESSING TECHNOLOGIES

EXTRUSION 107

COMPOUNDING 107

STARCH POLYMERS 108

PLA AND PHA 108

BLENDS WITH OIL-BASED PLASTICS 108

TABLE 29 EXAMPLES OF BIOPLASTIC EQUIPMENT SPECIALISTS 108

PELLETIZING 109

FOAMING 109

STORAGE AND DRYING 110

USE OF REGRIND 111

CAST FILM 112

THERMOFORMING 112

INJECTION MOLDING 113

INJECTION MOLDING (CONTINUED) 114

Chapter-7: MARKET ESTIMATES AND FORECASTS

TABLE 30 GLOBAL BIOPLASTICS DEMAND, THROUGH 2015 (METRIC TONS) 115
FIGURE 20 GLOBAL BIOPLASTIC MARKET BY RESIN TYPE, 2008-2015 (METRIC TONS) 116
TABLE 31 GLOBAL USE OF BIOPLASTICS BY REGION, THROUGH 2015 (METRIC TONS) 117
FIGURE 21 GLOBAL USE OF BIOPLASTICS BY REGION, 2008-2015 (METRIC TONS) 117
TABLE 32 GLOBAL BIOPLASTIC MARKET BY APPLICATION, THROUGH 2015 (METRIC TONS) 118
FIGURE 22 GLOBAL BIOPLASTIC MARKET BY APPLICATION, THROUGH 2015 (METRIC TONS) 119

Chapter-8: APPLICATIONS

OVERVIEW 120

PACKAGING 120

MARKET FORECAST 120

TABLE 33 GLOBAL USE OF BIOPLASTICS IN PACKAGING APPLICATIONS, THROUGH 2015 (METRIC TONS) 120 FIGURE 23 GLOBAL USE OF BIOPLASTICS IN PACKAGING APPLICATIONS, 2008-2015 (METRIC TONS) 121

SNACK FOOD 121

BOTTLES 122

THERMOFORMED TRAYS 122

LOOSE-FILL PACKAGING 123

CUPS AND UTENSILS 123

FOAM PACKAGING 124

Foam Packaging (Continued) 125

RIGID PACKAGING 126

NEW DEVELOPMENTS 126

AUTOMOTIVE 126

TABLE 34 GLOBAL USE OF BIOPLASTICS IN AUTO/TRANSPORTATION APPLICATIONS, THROUGH 2015 (METRIC TONS) 127 FIGURE 24 USE OF BIOPLASTICS IN AUTOMTOIVE APPLICATIONS, 2008-2015 (METRIC TONS) 128

INTERIOR 128

Foams 128

Components 129

Components (Continued) 130

Fuel Components 131

EXTERIOR 132

NEW DEVELOPMENTS 133

AGRICULTURE 133

MEDICAL 134

MARKET FORECAST 134

TABLE 35 GLOBAL OUTLOOK FOR BIOPLASTICS IN MEDICAL APPLCIATIONS, THROUGH 2015 (METRIC TONS) 134

ORTHOPEDIC FIXATION DEVICES 135

DRUG DELIVERY 135

HYDROGELS 136

MICROSPHERES 137

TISSUE ENGINEERING 137

Tissue Engineering (Continued) 138

Tissue Engineering (Continued) 139

STENTS 140

HYGENIC PRODUCTS 141

MEDICAL PACKAGING 142

Medical Packaging (Continued) 143

Medical Packaging (Continued) 144

AIRCRAFT 145 ELECTRICAL/ELECTRONICS 145 ELECTRICAL/ELECTRONICS (CONTINUED) 146 LIQUID CRYSTAL DISPLAYS 147 **CONDUCTIVE PLASTICS 148**

SPORTING GOODS 148 PHOTOVOLTAICS 148

Photovoltaics (Continued) 149

Chapter-9: ISSUES FACING BIOPLASTICS

ENVIRONMENTAL ISSUES 150

COMPOSTING 150

RECYCLABILITY 151

FOOD SUPPLY ISSUE 152

CARBON FOOTPRINT 152

GOVERNMENT INVOLVEMENT 153

Direct Actions 153

United States 153

Ohio 153

San Francisco 153

Europe 154

Germany 154

Italy 154

Indirect Actions 154

Canada 154

Japan 154

Japan (Continued) 155

Chapter-10: STANDARDS AND CERTFICATIONS

BIO-BASED 156

ASTM D6866 156

PD CEN/TR 15932:2010 156

BIODEGRADABILITY 157

EN 13432, ASTM D6400, ISO 17088 157

Chapter-11: PATENTS

TABLE 36 U.S. BIOPLASTIC PATENTS BY COUNTRY (PERIOD RANGES FROM JANUARY 1, 2008 TO MARCH 31, 2010) 158 TABLE 37 U.S. BIOPLASTIC PATENTS BY MARKET (PERIOD RANGES FROM JAN. 1, 2008 TO MARCH 31, 2010) 159 TABLE 38 U.S. BIOPLASTIC PATENTS BY POLYMER TYPE (PERIOD RANGES FROM JAN. 1, 2008 T0 MARCH 31, 2010) 159

U.S. PATENT 7,576,173 159

U.S. PATENT 7,553,923 160

U.S. PATENT 7,504,556 160

U. S. PATENT 7,439,352 160

U. S. PATENT 7,435,168 160 U. S. PATENT 7,582,777 160

U. S. PATENT 7,491,820 161

U.S. PATENT 7,588,632 161

- U. S. PATENT 7,566,753 161
- U. S. PATENT 7,670,545 161
- U. S. PATENT 7,608,649 162
- U. S. PATENT 7,602,108 162
- U.S. PATENT 7,687,125 162
- U.S. PATENT 7,452,592 163
- U.S. PATENT 7,582,456 163
- U.S. PATENT 7,645,839 163
- U.S. PATENT 7,563,830 163
- U.S. PATENT 7,495,044 164
- U.S. PATENT 7,666,261 164
- U.S. PATENT 7,638,560 164
- U.S. PATENT 7,556,757 165
- U.S. PATENT 7,378,266 165
- U.S. PATENT 7,654,465 165
- U.S. PATENT 7,368,160 166
- U.S. PATENT 7,582,456 166

Chapter-12: COMPANY PROFILES

ARKEMA 167

AVANTIUM 167

BIOLOG BIOTECHNOLOGIE UND LOGISTIK GMBH 168

BIOAMBER 168

BIOBASED CHEM CO. LTD. 169

BIOMATERA 169

BIOMER 169

BIOTEC BIOLOGISCHE NATURVERPACKUNGEN GMBH 170

BRASKEM 170

CARGILL 171

CEREPLAST 171

DANIMER SCIENTIFIC/MEREDIAN 171

DNP GREEN TECHNOLOGY 172

DOW PLASTICS 172

DUPONT 173

ROYAL DSM N.V. 173

DURECT CORP. 174

EASTMAN CHEMICAL 174

FABRI-KAL 174

FKUR PLASTICS CORP. 175

FUTERRO 175

INNOVIA FILMS 175

METABOLIX 176

MICROMIDAS 176

MYRIANT TECHNOLOGIES LLC 176

NATUREWORKS 177

NOVAMONT 177

PLANTIC TECHNOLOGIES, LIMITED 178

PLASTICS ENGINEERING ASSOCIATES 178

PLAXICA 178

Find Industry reports, Company profiles and Market Statistics

ReportLinker

POLYONE 179
PYRAMID BIOPLASTICS GUBEN FORSTER STRASSE 58 179
RODENBURG BIOPOLYMERS B.V. 179
RTP CO. 180
SYNBRA TECHNOLOGY 180
TATE & LYLE 181
TEKNOR-APEX 181
TEIJIN 181
TELLES 182
TIANAN BIOLOGIC MATERIAL CO. 182
TIANJIN GREEN BIO-SCIENCE CO., LTD. 183
TORAY 183
URETHANE SOY SYSTEMS CO. 183
ZHEJIANG HISUN BIOMATERIALS CO. 184

Chapter-13: APPENDIX A

APPENDIX A: LEADING BIOPLASTICS TRADE GROUPS 185
JAPAN BIOPLASTICS ASSOCIATION (JBPA) 185
EUROPEAN BIOPLASTICS 185
SPI BIOPLASTICS COUNCIL (USA) 185
SPI BIOPLASTICS COUNCIL (USA) (CONTINUED) 186

Chapter-14: APPENDIX B

APPENDIX B: IMPORTANT ACRONYMS RELATED TO BIOPLASTICS 187 IMPORTANT ACRONYMS RELATED TO BIOPLASTICS 187 IMPORTANT ACRONYMS ' (CONTINUED) 188

Chapter-15: APPENDIX C

APPENDIX C: SELECTED GLOSSARY OF TERMS 189 SELECTED GLOSSARY OF TERMS 189

Find Industry reports, Company profiles and Market Statistics

Fax Order Form

To place an order via fax simply print this form, fill in the information below and fax the completed form to +33 437 371 556 . If you have any questions please visit http://www.reportlinker.com/notify/contact

Order Information

Please verify that the product information is correct and select the format(s) you require.

<u>Bioplastics</u>	:: Techn	ologies an	d Global Markets				
Product Fori		luct forma	ts and the quantit	y you require.			
	1 User License 3 880,00 EUR			Quar	ntity:		
Contact Info			below in BLOCK	CAPITALS			
Title:	Mr		Mrs 🔲	Dr 🗀	Miss 🔲	Ms 🗀	Prof
First Name:	_	Last Name:					
Email Address:							
Job Title:							
Organization:	_						
Address:	_						
City:	_						
Postal / Zip Co	de: _						
Country:							

Phone Number:

Fax Number:

Find Industry reports, Company profiles and Market Statistics

Payment Information Please indicate the payment method, you would like to use by selecting the appropriate box. Payment by credit card Card Number: _____ Expiry Date _____ / _____ CVV Number Card Type (ex: Visa, Amex...) Payment by wire transfer Crédit Mutuel RIB: 10278 07314 00020256501 89 BIC: CMCIFR2A IBAN: FR76 1027 8073 1400 0202 5650 189 Payment by check **UBIQUICK SAS** 16 rue Grenette - 69002 LYON, FRANCE

Please note that by ordering from Reportlinker you are agreeing to our Terms and Conditions at http://www.reportlinker.com/index/terms

Customer signature:

Please fax this form to

+33 437 371 556