Demonstration and Driveability Project to Determine the Feasibility of Using E20 as a Motor Fuel

Final Report submitted to
Minnesota Department of Agriculture

> by

David Kittelson, Andy Tan, and Darrick Zarling University of Minnesota, Department of Mechanical Engineering

111 Church Street SE
Minneapolis, MN 55414
Beth Evans, Evans Research Consultants
Carlton H. Jewitt, Consultant, Renewable Fuels Association

Table of Contents

Abstract
I. Introduction 3
II. Summary and Conclusions 5
III. Test Vehicles 5
IV. Test Fuel 6
V. Test Site 8
VI. Test Program 8
A. Test Procedure 8
B. Fueling 8
C. Log Sheet 9
VII. Discussion of Results 9
A. Lay Driver Data Analysis 9
B. Driveability Events 10
C. Trained Rater Evaluation 10
D. Fuel Economy Measurements 12
VIII. Acknowledgements 13
IX. References 13
Appendices
Appendix A - Daily Log Sheet Procedures 14
Appendix B - Vehicle Fleet 15
Tables and Figures 17

ABSTRACT

Minnesota Statute 239.791 Subd. 1a requires that on August 30, 2013, gasoline sold in the State of Minnesota shall contain at least 20% denatured ethanol by volume. If on December 31, 2010, however, it is determined that 20% of the State's gasoline volume is ethanol, then this provision expires. If 20% volume replacement is not achieved by 2010, then the 2013 requirement becomes effective provided the United States Environmental Protection Agency (US EPA) certifies E20 by December 31, 2010. In order to use E20 in non-Flex-Fuel vehicles, it will be necessary that the US EPA certify E20 as a motor fuel through a waiver under section 211(f) (4) of the Clean Air Act.

In order for E20 to be certified by the EPA, five main areas of documentation must be presented in the process of application for their consideration: driveability, material compatibility, emissions, exhaust and evaporative emission control systems durability, and health effects.

Three complementary projects were commissioned in pursuit of this waiver: (1) the current project, a yearlong demonstration and driveability project at the University of Minnesota (UMN), Twin Cities; (2) a materials compatibility project that is nearing completion at Minnesota State University, Mankato; and (3) a preliminary emissions study that is nearing completion by the Renewable Fuels Association (RFA). Additional emissions testing, emission systems durability and health effects testing will require more work and will be addressed at the conclusion of these studies.

In pursuit of the EPA waiver, the State of Minnesota contracted the University of Minnesota to conduct a driveability evaluation of a vehicle test fleet consisting of 80 university vehicles, comprising 40 pairs of similar vehicles with similar usage patterns. One of each pair of vehicles was fueled with the baseline fuel for the test program (E0) and the other was fueled with the project test fuel (E20). Vehicle drivers were asked to complete daily log sheets indicating any driveability problems that occurred. These lay driver evaluations were compiled throughout the study along with maintenance and fuel consumption data. In addition, trained vehicle driveability raters were contracted to conduct industry standard driveability tests on a subset of the vehicle fleet, with a test series in each season: fall, winter, spring, and summer.

Although some differences in performance were observed between vehicles fueled by E0 and E20 by both lay drivers and trained raters, the differences were small, inconsistent, and not statistically significant. Minor
mechanical failures occurred but they are not believed to be fuel- related. The difference between the fuel consumption of matched pairs of E0 and E20 vehicles was very small and not statistically significant. In summary, no significant differences between paired E0 and E20 vehicles were observed in driveability, reliability, or fuel economy.

I. INTRODUCTION

Minnesota Statute 239.791 Subd. 1a requires that on August 30, 2013, gasoline sold in the State of Minnesota shall contain at least 20% denatured ethanol by volume. If on December 31, 2010, however, it is determined that 20% of the State's gasoline volume is ethanol, then this provision expires. This volume replacement could be accomplished by an average of the increased use of E85 and E10 blends, but that would require a large increase in the use of E85 vehicles. If 20% volume replacement is not achieved by 2010, then the 2013 requirement becomes effective provided the United States Environmental Protection Agency (US EPA) certifies E20 by December 31, 2010. In order to use E20 in non-Flex-Fuel vehicles, it will be necessary that the US EPA certify E20 as a motor fuel through a waiver under section 211(f) (4) of the Clean Air Act.

In pursuit of the EPA waiver, the State of Minnesota contracted the University of Minnesota to conduct a driveability evaluation of a vehicle test fleet consisting of 80 university vehicles, comprising 40 pairs of similar vehicles with similar usage patterns. One of each pair of vehicles was fueled with the baseline fuel for the test program (E0) and the other was fueled with the project test fuel (E20). Vehicle drivers were asked to complete daily \log sheets indicating any driveability problems that occurred.

The starting date for the project was initially scheduled for March 15, 2006; however, due to delays in finalizing the contracts, the project was not started until May 24,2006 . The complete driveability study required just over one year to complete.

The underground fuel tanks at the UMN Fleet Services facility were emptied, cleaned, and filled with the two fuels (E0 and E20). The drivers of the 80 test vehicles were issued new fuel keys, or "chips," which gave them access to only the appropriate fuel for their particular vehicle. Fuel usage was electronically monitored.

Drivers were asked to complete a daily vehicle driveability \log sheet. The log sheets were collected and reviewed each week. Driver training meetings were scheduled at various times early in the project to explain the project itself and completion of the log sheets. The drivers were requested to attend one of the meetings at a convenient time for them. Instructions, procedures, and definitions were discussed at the training meetings. Appendix A shows the instruction sheet given to the drivers.

In addition to the driveability evaluations by the lay drivers, professional driveability raters evaluated a subset of a nominal twelve pairs of vehicles over four separate seasons.

II. SUMMARY AND CONCLUSIONS

The principal results of the thirteen-month University of Minnesota E20 fleet demonstration and driveability evaluation are listed below. The vehicle test fleet consisted of 80 university vehicles, comprising 40 pairs of similar vehicles with similar usage patterns. One of each pair of vehicles was fueled with the baseline fuel for the test program (E0) and the other was fueled with the project test fuel (E20). Vehicle drivers were asked to complete daily \log sheets indicating any driveability problems that occurred. These lay driver evaluations were compiled throughout the study along with maintenance and fuel consumption data. In addition, trained vehicle drivability raters were contracted to conduct industry standard driveability tests on a subset of the vehicle fleet, with a test series in each season: fall, winter, spring, and summer.

- Analysis of vehicle driveability data generated by the lay drivers reveals that seasonal performance differences between E0 and E20 are inconsistent and not statistically significant. All statistical testing is based on the requirement of a 95% confidence level.
- Analysis of vehicle driveability evaluations performed by the trained raters shows that seasonal performance differences between E0 and E20 are not statistically significant at the 95% confidence interval.
- The trained raters' evaluations show that there is not a significant difference in performance between E0 and E20 throughout the year when exposed to the extreme cold and heat of Minnesota weather.
- The trained raters' evaluations also show that both E0 and E20 performed the worst in the winter.
- Study of the maintenance records of the forty E20 test vehicles reveal there to be two instances of
vehicle operability failure. In one case, the fuel system pressure regulator failed and, upon inspection, it was determined to be a fairly common hardware-related problem. The other case involved the electronic control unit.
- The properties of the E0 and E20 fuels used in the program were monitored through regular testing. The main properties are summarized below:
- Ethanol content of the nominal E20 fuels ranged from 18.7 to 22.8 volume \% throughout the thirteen-month vehicle driveability study.
- The driveability index (DI) of the E20 fuels, adjusted for actual ethanol content, ranged from 973 (winter) to 1046 (summer). The DI of the E0 fuels ranged from 1042 (winter) to 1199 (summer). ASTM specifications for Minnesota call for DI maximums of 1200 during winter and 1250 during summer.
- TVL20s of the E20 fuels ranged from $104^{\circ} \mathrm{F}$ (winter) to $127^{\circ} \mathrm{F}$ (summer), whereas the E0 fuels ranged from $106^{\circ} \mathrm{F}$ (winter) to $142^{\circ} \mathrm{F}$ (summer). ASTM specifications for Minnesota call for TVL20 minimums of $105^{\circ} \mathrm{F}$ during winter and $124^{\circ} \mathrm{F}$ during summer.
- T50s of the E20 fuels ranged from $155^{\circ} \mathrm{F}$ (winter) to $159^{\circ} \mathrm{F}$ (summer), whereas the E0 fuels ranged from $192^{\circ} \mathrm{F}$ (winter) to $220^{\circ} \mathrm{F}$ (summer). ASTM specifications for Minnesota call for T50s of $150^{\circ} \mathrm{F}$ minimum and $230^{\circ} \mathrm{F}$ maximum during winter; and $170^{\circ} \mathrm{F}$ minimum and $250^{\circ} \mathrm{F}$ maximum during summer.

III. TEST VEHICLES

For the test fleet, 40 pairs of vehicles were chosen from UMN Fleet Services. The vehicles were chosen as pairs of the same year, make, and model that would have similar usage patterns.

There were no carbureted vehicles in this program, but hybrids were included. The vehicle model years ranged from 2000 to 2006. Engine displacement ranged from 1.5 to 8.1 liters. Starting odometer reading ranged from 2,271 to 44,753 . The fleet consisted of 14 passenger cars and 66 light-duty trucks or vans. Vehicles were manufactured by DaimlerChrysler, Ford, General Motors, and Toyota. A complete description of the 80 vehicles is presented in Appendix B.

IV. TEST FUEL

The study and analysis of fuel characteristics are an integral component of a fuel by vehicle driveability research program. Indeed, vehicle driveability performance is directly related to fuel volatility characteristics. The Minnesota - Renewable Fuels Association E20 Fuel Research Program includes a one-year study of the correlation between vehicle driveability demerits, or lack thereof, fuel volatility measurements and ethanol content. Specifically, fuel volatility characteristics can predict whether or not the fuel will provide optimum vehicle driveability.

The vehicle driveability study utilized two fuels, one containing 0% ethanol and the other fuel containing nominal 20 volume \% ethanol. The E0 fuel was commercially available hydrocarbon-only, regular octane grade gasoline. The E20 fuel was comprised of commercially available E10 up-blended with ethanol to E20.

The automotive and petroleum industries have conducted and continue to conduct fuel volatility research programs. Excellent vehicle driveability is demanded by consumers and is the driving force for auto-oil cooperative research. Fuel volatility is defined by a combination of measurements obtained by precise analytical testing. Tests include distillation, vapor pressure, vapor-liquid ratio and driveability index. Complete volatility specifications are detailed in ASTM document D 4814, "Standard Specification for Automotive Spark-Ignition Engine Fuel." ${ }^{1}$

Various portions of the gasoline distillation curve have been correlated with engine performance. For example, vapor pressure and the initial approximately 5% (all percentages are volume based) distilled are related to acceptable cold start, the next 15% distilled is associated with cold driveaway and warm up, the next 35% impacts hot start and hot driveaway, the remaining approximate 45% is associated with higher energy content and fuel economy. A more comprehensive discussion is presented in Chevron Products Company document "Technical Review of Motor Gasolines." ${ }^{2}$

In addition to distillation requirements, there are additional volatility-related specifications. Two of these specifications are adjusted throughout the seasonal changes of the year and are referred to as driveability index and vapor-liquid ratio.

Driveability index is a predictive measurement associated with acceptable cold engine start-up and driveaway at low temperatures. Driveability index (DI) is derived from an empirical mathematical model which incorporates distillation temperatures at which $10 \%, 50 \%$,
and 90% volume are evaporated (distilled). Driveability indices are adjusted seasonally. A fuel possessing a DI less than the seasonal maximums specified within ASTM gasoline specifications would be expected to provide greater assurance of acceptable vehicle cold-start and driveaway.

Vapor-liquid ratio is also adjusted throughout the seasons of the year, and it is a measure of gasoline vaporization at a given temperature. It is commonly expressed as TVL20, the temperature at which the fuel forms twenty volumes of vapor per one volume of liquid. Seasonal TVL20s are also specified within ASTM gasoline specifications. TVL20 is associated with acceptable hot engine start-up and driveaway during hot ambient temperatures. A TVL20 greater than that specified within ASTM gasoline specifications would be expected to provide greater protection against fuel system vapor-lock-type operational problems.

In summary, the more important gasoline volatility characteristics are T10, T50, T90, DI, and TVL20. These characteristics of the test fuels are discussed below. The reader should be aware the preceding discussion does not represent the entire consideration of fuel volatility characteristics and analyses. Rather, it is a snapshot of several of the more important volatility quality measurements of the fuels.

Throughout the nominal one-year vehicle driveability study, the UMN Fleet Services Facility received 24 deliveries of E0 and 10 deliveries of E20. The fuel shipment dates are presented in Table 1, and the ASTM fuel specifications are detailed in Table 2. Tables 3 a and 3 b present T10, T50, T90, DI, and TVL20 analyses of E0 and E20 fuels as reported by the Minnesota Weights and Measures Laboratory. Tables $4 \mathrm{a}, 4 \mathrm{~b}, 4 \mathrm{c}$, and 4 d present the subject inspections of a number of fuel samples from tankage after drops of the shipments of E20 and E0, both delivered on the same date or very close to the date of the E20 deliveries. Table 4a presents averages of the inspections for the fall of 2006, Table 4 b for the winter of 2006/2007, Table 4 c for the spring of 2007, and Table 4d for the summer of 2007.

Samples of the fuels used in this program were collected regularly for analysis. Each of the fuels listed in Table 1 were analyzed for the following characteristics: distillation curve, vapor pressure, TLV20, content of ethanol, MTBE and benzene, and density. API gravity and driveability index (DI) were calculated; the former from density, and the latter from the distillation curve. An adjusted DI was calculated for the E20 fuel using the distillation curve and ethanol content. Initially, the fuel analysis did not include the TVL20 measurement. The
testing agency, the State of Minnesota Department of Commerce, Weights and Measures Division, did not initially have the equipment for this test and had to purchase and install it. This delayed the TVL20 measurements by about nine months. The backup fuel sample from each of the shipments was retained in dark refrigerated storage for eventual testing; however, those stored samples might have lost some volatility over time.

The distillation curves are plotted in Figures 1 and 2 for E20 and E0 fuels, respectively. Figure 1a shows curves for each of the E20 fuels tested, while Figure 1b shows average curves for summer, Class A and winter, Class D and Class E fuels. Also shown are the ASTM standards for Class A, D, and E fuels. Fuels are required to have distillation temperatures below the standard temperature at 10% (T10) and 90% (T90) evaporated and between temperature limits for 50% evaporated (T50). The E20 fuels shown in Figure 1a all meet T10 and T90 standards, but all the summer fuels fall below the Class A lower T50 limit of $170^{\circ} \mathrm{F}$; that is, their midpoint volatility is too high. All the E0 fuels shown in Figure 2a meet these standards.

The detailed results of the fuel analyses are shown in Tables 3a and 3b. Also shown are the ASTM requirements for T50, DI, vapor pressure, and TLV20 corresponding to each delivery date (Class A, C, D, and E fuels). The cells highlighted in cyan indicate results that are out of specification by more than 1% conditions. The samples listed in red in Table 3a were compromised. For sample 33768 (11/22/06), the test started before the testing laboratory was relocated, and most of the sample was lost. For sample 33769 , the sample cap came off before testing. The lower part of Table 3a shows the classes of TVL20 for vapor lock protection and the monthly requirements for Minnesota. The TVL20 temperature should not fall below the values indicated; therefore, TVL20s that were higher than specified would be expected to provide greater protection against fuel system vapor-locking problems.

Examination of Table 3 shows that the T50 values for all the summer E20 fuels fell below ASTM (Class A) specifications. This is also apparent from the plots of Figure 1. Total vapor pressure and Reid vapor pressures of most E0 and E20 samples were above the specification, also indicating excessive fuel volatility for that time of the year. TVL20 values for most of the E20 fuels were borderline, and two samples were below the standard.

Table 3 also shows driveability indices calculated in two ways. The traditional calculation was developed for hydrocarbon-only gasoline and bases the index entirely
on the ASTM distillation curve. Here, DI is defined as follows:

$\mathrm{DI}=1.5 * \mathrm{~T} 10+3 * \mathrm{~T} 50+1 * \mathrm{~T} 90$

The addition of ethanol tends to increase the volatility of the fuel and depress T50. To compensate for this, a driveability index has been developed from CRC research programs applicable for ethanol blends up to E10. It is given by:

DI = 1.5*T10 + 3*T50 + 1*T90 + 2.403*vol\%EtOH

Although the above-modified DI equation has not been validated for ethanol blends higher than E10, it should still be better than the hydrocarbon-only DI for the E20 blends. For the E0 blends, the DI has been calculated utilizing the hydrocarbon-only DI equation. For the E20 fuels, DIs have been calculated utilizing both of the above-described driveability index equations. The reported driveability indices for the E20 fuels which contain the ethanol term are calculated utilizing the modified DI equation and the actual ethanol content of the E20 fuels. These are shown in Table 3. It is recommended that DI for Minnesota not exceed 1250 in warm weather and 1200 in cold weather. All fuels tested meet these standards.

Table 3 also shows the ethanol and benzene content of the fuels. The E0 fuels were ethanol-free, and the E20 fuels ranged from 18.7 to 22.8 volume \% ethanol. Benzene content of the E0 fuels ranged from 0.7 to 2.2 volume \%, and for the E20 fuels from 0.8 to 1.1 volume \%.

Caution must be exercised to fully understand the discussion of fuel analyses. The E0 and E20 fuel samples tested and recorded in Tables 3 and 4 represent the product of commingling the fresh gasoline pumped into the underground storage tank with each new fuel delivery plus the gasoline remaining in the tank from previous loads. Each tank was then sampled through the dispenser hose after the commingled fuel had been allowed to purge the dispensing system of the residual fuel as it existed before the delivery. This commingled fuel as tested then represents the fuel that would be used in the vehicles subsequent to each delivery. The commingled fuel, therefore, would not necessarily be expected to meet specifications as would the fuel dropped fresh at each delivery event. UMN Fleet Services' efforts to minimize commingling by way of inventory control were persistent throughout the study so that the vehicles were operating to that extent possible on appropriate seasonal volatility fuels. These characteristics might suggest hot-weather driveability problems not necessarily related to the ethanol content, but to the trailing volatility of the gasoline portion of the fuel caused by the relative infrequent deliveries of the E20.

The effects of the above described commingling are revealed upon study of the fuel volatility characteristics. For example, the significant drop in vapor pressure of the E20 fuel following the 3/28/07 fuel delivery should be noted. It is this fuel which was in the test vehicles during the trained raters' driveability evaluations which occurred $4 / 14 / 07$. Attention is also directed to the volatility characteristics of the E20 fuel evaluated by the trained raters during the summer and yet represents the higher vapor pressure, cold-weather volatility fuel which was delivered during May. The preceding represents but a few examples of the importance of sampling and analyzing the E0 and E20 fuels exactly representative of the respective fuel dispensed into the test vehicles and as it relates to analysis of fuel by vehicle driveability analyses.

A study of the fuel inspections presented in Tables 4a, $4 b, 4 c$, and $4 d$ reveals ASTM specification failures for the E20 fuels as measured by T50. Such was not unexpected. The primary technical concern was related to a sparkignited automotive motor fuel containing 20 volume $\%$ of a single boiling point component, ethanol. It was known the continuum of a hydrocarbon-only gasoline distillation curve is interrupted with 10 volume \% ethanol. The continuum would be expected to be disrupted to a greater degree with 20 volume \% ethanol. This pronounced disruption occurs beginning approximately at the T20 point up to and including the T50 point. The corresponding "flattening" of the distillation curve occurs beginning at approximately $125^{\circ} \mathrm{F}$ up to approximately $160-170^{\circ} \mathrm{F}$. The ethanol (boiling point $173^{\circ} \mathrm{F}$) thus significantly depresses T50. The depression of T50 for the E20 fuels is readily apparent as graphically presented in the distillation curves contained in Figures 1a and 1b compared to the curves for the E0 fuels shown in Figures 2a and 2b.

V. TEST SITE

The lay drivers went about their normal routines while driving the test vehicles such that there was no particular test site for that portion of the program. Much of the normal vehicle operation took place on the University of Minnesota's Minneapolis and St. Paul campuses, with low miles and frequent engine starts and stops. Several of the vehicles involved were part of UMN Fleet Services' rental pool and could have been driven essentially anywhere. The temperatures recorded on Figures 5a, b, c and d were measured inside city limits at the Minneapolis/St. Paul campus of the University of Minnesota where most of the lay drivers logged their miles.

For the evaluations by the trained raters, an acceptable "test track" was required. A closed course was necessary where the 20 vehicles could be parked over-
night safely, and the test track needed to be immediately accessible to the parked vehicles to allow cold engine driveability to be evaluated. The initial test site used for the fall rating session was located in Arden Hills, Minnesota, and was being used by the Minnesota Department of Transportation (MnDOT) for training, along with Ramsey County and others. The property was owned by the Minnesota National Guard. There was a straight section of paved roadway that is slightly over a half-mile long. It was rougher than desired, but had no significant potholes or other characteristics that significantly interfered with the testing.

Because of the rough pavement at the MnDOT facility, several alternate test sites were investigated, and the UMN's UMORE campus in Rosemount, Minnesota, was selected and used for the final three seasonal evaluations by the trained raters. Since the trained rater evaluations were located at test sites in the suburbs well outside the city limits, portable temperature recording devices were used to record local ambient temperatures during the overnight soak periods and the driveability test maneuvers.

VI. TEST PROGRAM

A. Test Procedure

The procedures for the lay drivers were explained during the drivers' training meetings conducted but weeks after the test fuels were introduced into the vehicles. Four different meeting times were scheduled so that drivers could choose the most convenient time to attend the meeting. Terminologies and definitions of malfunctions were based upon CRC Report Numbers 6383 and 6484, but were slightly modified to make it easier for the drivers to complete the log sheets and to avoid putting drivers at risk in traffic. During the training meetings, all the drivers were asked if they had noticed any change in the operation of their vehicles compared to the normal fuel (E10) they had used. Drivers did not report noticing any difference in vehicle performance.

For the trained rater evaluations, the test techniques were used as described in the CRC reports 3,4 . This included an overnight cold soak for the vehicles during the fall, winter, and spring sessions, and a pre-test vehicle warm-up and three hot soaks during the summer testing.

B. Fueling

There is an automatic fueling system at UMN Fleet Services that allowed the drivers to fill with only the assigned fuel for the vehicles they were using. This ensured that no vehicle could be filled with a different kind of fuel
other than the rental vehicles driven to another location and requiring an emergency fueling.

C. Log Sheet

Feedback from the lay drivers was collected, reviewed, and entered into the database weekly. This included the date, odometer reading, idle quality, and driving quality for both cold and warmed-up conditions. Daily climate data from the UMN St. Paul Campus Climatological Observatory website were also entered.

VII. DISCUSSION OF RESULTS

A. Lay Driver Data Analysis

Table 5 shows a sample log sheet that the lay drivers were asked to complete. The log sheets were collected and reviewed weekly. Driver training meetings were scheduled at several times early in the project to explain the project and completion of the log sheets. The drivers were requested to attend one of the meetings at a convenient time for them. Instructions, procedures, and definitions were discussed at the training meetings. Approximately half of the drivers attended a training meeting. During the training meetings, all the drivers were asked if they noticed any change in the operation of their vehicles during the previous month, especially those who had filled with "test" fuel (E20). None of the drivers reported any initial driveability issues.

Table 6 shows the frequency of the lay driver feedback measured on a daily basis. Because some of the vehicles were being operated seven days a week (although by different drivers), the number of responses was divided by the number of days assuming full sevenday weeks in the specific season. The lay driver survey covered thirteen months; thus, the extra month of testing in the summer of 2007 was added to the summer of 2006 and presented in the summer category. This method was used throughout the tables and figures for the lay driver data. The lay driver response rate for completing the log sheets was disappointing throughout the thirteen-month vehicle driveability study, averaging $30-40 \%$.

Table 7 details the responses to the driver surveys submitted through the middle of August 2007. Many of the vehicles for which events had been reported earlier in the program did not report any events after about the middle of the fall season, while some other drivers started turning in their log sheets later in the program. In addition, there were drivers submitting their \log sheet for a group of weeks at one time, instead of on a weekly basis. Table 8 summarizes the lay driver response rates
for completing the log sheets. Results are shown only for vehicles for which both vehicles in the vehicle pair have submitted responses during a given season. The overall fractional rates for the thirteen-month study were disappointingly low, 32% and 39% for E0 and E20 vehicles, respectively.

The results of the driveability evaluation \log sheets were converted to a numerical scoring system to allow quantitative analysis of the results. Table 9 shows the scoring values used, which are the same values for both a cold and warm engine. All the dates were categorized seasonally to calculate the averages and 95% confidence intervals: summer (July through September 2006 and 2007); fall (October through December 2006); winter (January through March 2007); and spring (April through June 2007). Table 10 presents the results after they were converted to the numerical scoring system. Statistical results have been calculated in two ways. In the first, all of the reported demerits for a given season and fuel are used. This is the count-weighted method. This method, however, may be biased in that the drivers of some vehicles reported the same problems over and over, while for other vehicles which may have had similar problems, reports were not submitted as often. Thus, vehicles in which the drivers were more diligent in completing reports will be more heavily weighted. In the second method, the average demerits for each vehicle are calculated and statistics are based upon performance of individual vehicles. This is the vehicle-weighted method. Table 10a and Figure 3 show the averages and 95% confidence intervals based on count-weighting, while Table 10b and Figure 4 show the corresponding statistics using the vehicle-weighted method. Table 11 lists individual vehicle averages, as well as the number of reports including those turned in, but reporting no events.

Table 10 and Figures 3 and 4 show that seasonal performance differences between E0 and E20 determined by the lay driver surveys are inconsistent and, except for two cases, not statistically significant. For example, on a vehicle-weighted basis, E0 performs less well than E20 during the fall and winter seasons, while the reverse is true if the count-weighted basis is used. This illustrates the limitations of using evaluations of drivers not specifically trained in driveability evaluation. On the other hand, the inconsistency and lack of statistical significance suggests that differences in performance of the two fuels were not great. There was no "smoking gun." It is still useful, however, to consider individual driveability events.

B. Driveability Events

The overall response rates are summarized in Table 8. The total number of vehicle drivability events reported is 1,342 for E0 and 1,355 for E20, with more events reported for E0 during the spring, summer, and winter, and more for E20 during the fall. None of the vehicles used an engine block heater during the project. Figure 5 shows daily temperatures for these periods to help interpret the results.

Throughout the project, only two vehicles had a check-engine light illuminate. One was Vehicle License Number 911297, which ran on E20. The fuel pressure regulator failed; however, the shop manager does not believe this was due to the fuel being used. He indicated this is a common hardware failure for that specific make and model. The other vehicle was License Number 914209 which also ran on E20. It appears that mice had eaten the wiring around the Electronic Control Unit (ECU).

C. Trained Rater Evaluation

To assist in scientifically validating the test, trained driveability raters evaluated a subset of a nominal twelve pairs of vehicles over four separate seasons. Although the program began in the summer of 2006 , the first test session with the trained raters was held in the fall, on October 21,2006 . The winter test session was conducted on January 20, 2007, the spring test on April 14, 2007, and the summer session took place on July 28-29, 2007.

The trained rater evaluations used industry-recognized procedures and practices developed and used by the Coordinating Research Council (CRC). It must be clearly understood; however, that CRC is not associated with the Minnesota - Renewable Fuels Association (MN-RFA) E20 Research Program, has provided no funding, and has not reviewed or endorsed the MN-RFA E20 Research Program.

Vehicle driveability evaluations were performed by two trained raters using a cold-start and warm-up driveability procedure 3 during the fall, winter, and spring testing. A hot-start hot-fuel-handling procedure4 was used during the summer testing. Because hot-fuel-handling testing requires long soak times within the test, two days were needed for the summer testing. The trained raters are knowledgeable and experienced with vehicle driveability testing.

Of the nominal twelve pairs of vehicles assigned for driveability testing, one of each pair was operated on E0 and the other was operated on E20. Each vehicle was assigned to the same rater throughout four seasonal tests.

Because of the logistical difficulties in making these same vehicles available for all four testing sessions, there were some substitutions and omissions during each testing session; however, there is a core set of paired vehicles that were tested in all four testing sessions. Three vehicles that were tested during the fall session were sold and replaced with vehicles of the same make and model. The replacement vehicles had already been part of the overall 80 -vehicle test fleet. The list of vehicles tested and in which of the four sessions they were evaluated is presented in Table 12. Fuel samples for analysis of ethanol content were taken from the fuel tanks of randomly selected vehicles during the spring and summer trained raters' evaluations. The results of these analysis are listed in Tables 13 and 14.

The timing of the fall session was scheduled to take advantage of ambient temperatures in the $30^{\circ} \mathrm{F}-40^{\circ} \mathrm{F}$ range since this can potentially be a critical calibration range for vehicles. Somewhere in this ambient temperature range, vehicles typically adjust their calibration from being enriched to operate in cold weather to operating in a leaner condition for warmer weather. This $30^{\circ} \mathrm{F}-40^{\circ} \mathrm{F}$ range is often called a "shoulder temperature," because of its position on the edge of both types of calibration. The fall testing all took place within a tight optimal $34^{\circ} \mathrm{F}$ $36^{\circ} \mathrm{F}$ band.

The goal for scheduling the winter session was the coldest weather of the season. This typically occurs sometime between the second weekend of January and the first weekend of February. On the date of the winter testing session (January 20, 2007), the temperature ideally reached the single digits below zero ${ }^{\circ} \mathrm{F}$ overnight, and the test finished at $+7^{\circ} \mathrm{F}$.

The date for the spring session was selected due to the vapor pressure regulations, rather than weather. Per Minnesota ASTM guidelines, the vapor pressure must be lower for spring (a maximum of 13.5 psi) than it is for winter (a maximum of 15 psi). This transition occurs during the month of March. This relatively small vapor pressure reduction is then followed in April by the spring to summer transition, resulting in a maximum of 9.0 psi . Thus, the spring testing session was scheduled for April 14, 2007, when the intermediate vapor pressure was available. In order to ensure that the desired fuel with the proper vapor pressure characteristics was used in the vehicles before and during the trained rater evaluation, fuel storage tank levels were closely monitored, and shipments were ordered at the appropriate times.

The summer session was scheduled for the warmest weather of the year, which typically occurs beginning the second half of July to early August in Minnesota. All
vehicle tests on July 29th were performed in the ambient temperature range of $90^{\circ} \mathrm{F}-98^{\circ} \mathrm{F}$. All testing on July 30th was conducted in the ambient temperature range of $87^{\circ} \mathrm{F}-100^{\circ} \mathrm{F}$. A single vehicle evaluation occurred at $87^{\circ} \mathrm{F}$ when the sun was temporarily blocked by several clouds. All remaining testing on July 30th was conducted within the ambient temperature range of $93^{\circ} \mathrm{F}-100^{\circ} \mathrm{F}$.

The cold-start and warm-up driveability procedure that was used is presented in detail in Reference 3. The procedure consists of a series of light, moderate, and wide-open-throttle maneuvers mixed with idles to obtain as many evaluations as possible of driveability in a cold engine at cold temperatures. Malfunctions such as hardstarting, idle roughness, hesitation, stumble, surge, backfire, and stalls are recorded. Severity levels are evaluated as trace, moderate, heavy, or extreme.

The hot-fuel-handling procedure that was used is detailed in Reference 4. Immediately prior to testing, the vehicle is driven for 20 miles during which the vehicle is operated at $15 \mathrm{mph}, 25 \mathrm{mph}, 35 \mathrm{mph}, 45 \mathrm{mph}$, and 55 mph . The vehicle is then immediately parked in a roofless soak shed for 20 minutes with the ignition off. This roofless soak shed is intended to simulate a parking lot condition with very little air flow around the vehicle and the sun beating down upon it. The engine is then re-started after the 20-minute engine-off soak, and the vehicle is accelerated at wide-open-throttle to 35 mph . Malfunctions such as hard-starting, idle roughness, hesitation, stumble, surge, backfire, and stalls are recorded. Severity levels are evaluated as trace, moderate, heavy, or extreme. The vehicle is then parked in the roofless soak shed with the engine on for 20 minutes, followed by a light-throttle acceleration during which malfunctions are evaluated. After another engine-off 20-minute soak, the vehicle is re-started and accelerated at light-throttle, during which malfunctions are evaluated.

The data for both procedures are quantified by numerical demerits, and the summary score for each vehicle/ fuel test is calculated as total weighted demerits (TWDs), where low TWDs represent better vehicle driveability, and high TWDs represent poorer vehicle driveability performance. Typically, $15-20$ TWDs are considered to be experimental noise in the data, with levels above that considered to legitimately distinguish between the fuels. TWDs are often reported as a log transform, $\log (\mathrm{TWD}+1)$, as this provides a more normal data set. Natural log transform minimizes the skew associated with extremely low and extremely high TWDs by presentation of an exponential function in a linear fashion. The "TWD+1" eliminates the problem of taking the natural log transform if a vehicle has zero TWDs.

The average $\log (T W D+1)$ was the highest for the winter rating session, as expected under the cold-temperature conditions. Figures 6 a and 6 b summarize the results of the driveability evaluations performed by the trained raters during the fall, winter, spring, and summer. Figure 6a plots $\log (T W D+1)$ averages, while Figures 6b plots the linear TWD averages. The error bars plotted in Figure 6 are the 95% confidence intervals. Average demerits and confidence intervals are also tabulated in Table 12. Statistical tests were conducted on seasonal averages. These tests showed that none of the seasonal differences between fuels was significant at a 95% confidence level. All averages and confidence intervals are based on vehicle pairs. If one vehicle of a pair was missing in a given season, the other was excluded from the statistics. Figures $7 \mathrm{a}, 7 \mathrm{~b}, 7 \mathrm{c}$, and 7 d show individual vehicle TWD scores for summer, fall, winter, and spring, respectively.

A review of the raw data for all four test seasons reveals that the fleet operated satisfactorily on both fuels. Relatively few objectionable malfunctions were detected, and there were no obvious differences between the fuels. The highest raw demerit scores for the fleet occurred in the winter which, as mentioned above, is not unexpected.

During the fall test session, the TWDs of all but one vehicle fell within the data noise range if data noise is defined as 20 TWDs or less. The one observation above the experimental noise level is a vehicle fueled with E0. Almost all malfunctions, with the exception of idle quality, would not be noticeable to average drivers. By definition, virtually all of the maneuvering malfunctions rated would only be noticeable to a trained rater. There were multiple instances in which degraded idle quality would be noticeable to the average driver; however, these instances were split between the vehicles fueled with E0 (42% of the instances) and those fueled with E20 (58\% of the instances).

In the winter test session, there were about 35% of the observations that fell within the data noise level, as defined by 20 TWDs or less. There were maneuvering malfunctions with both the E0 and E20 fuels that would be noticeable to the average driver. As in the fall evaluations, the idle quality is the predominant noticeable malfunction. In the winter testing, there were considerably more instances of noticeable degraded idle quality than in the fall, and the vehicles fueled with E20 had degraded idle quality more often than those fueled with E 0 . Of the total observations of noticeable degraded idle quality, 62% were from vehicles fueled with E20, and 38% were from vehicles fueled with E0. The overall performance of the entire test fleet was poorer than the fall evaluations, but there was no clear evidence other than idle quality
that one fuel performed better than the other. The overall TWDs do not indicate a performance trend of one fuel versus the other.

In the spring test session, there were about 25% of the observations that fell within the data noise level, as defined by 20 TWDs or less. Idle quality was the predominant source of noticeable malfunctions, although there were some maneuvering malfunctions that would be noticeable to average drivers. The maneuvering malfunctions that would be noticeable to the average driver were fairly evenly split between the two fuels. The instances of noticeable degraded idle quality were evenly split between the two fuels: 48% for E0, and 52% for E20. Noticeable degraded idle quality occurred more frequently than in the fall session, but considerably less frequently than in the winter. In four pairs of the vehicles, the vehicles fueled with E0 performed poorer than the vehicles fueled with E20. In one pair, the vehicle fueled with E20 performed poorer than the vehicle fueled E0. In that one case, the results from the spring evaluations were a reverse from the winter evaluations, but they confirmed the fall results with that pair of vehicles. In some cases, the spring results for paired vehicles were similar to the fall findings, and in some cases, they were similar to the results seen in winter.

In the summer test session, there were about 62% of the observations that fell within the data noise level, as defined by 20 TWDs or less. While idle quality contributed heavily to the malfunctions that would be noticeable to average drivers, there were some occurrences of maneuvering malfunctions that would be noticeable to average drivers. The noticeable maneuvering malfunctions were split evenly (50% each) between E0 and E20. In fact, all maneuvering malfunctions, whether noticeable to the average driver by definition or not, were split almost evenly between the two fuels (49% for E0, and 51% for E20). All the degraded idle quality recorded, whether noticeable to the average driver by definition or not, was split evenly between the two fuels: 49% for E0, and 51% for E20. Of the degraded idle quality noticeable to the average driver, 47% belonged to E0, while 53% belonged to E20.

D. Fuel Economy Measurements

This study was not designed to examine fuel economy. For such a study, careful matching of driving conditions and driving patterns is necessary; however, data on fuel consumption and miles driven were available from fleet headquarters. It was decided to present these data not because they are useful for comparing E0 and E20 (condi-
tions were not well enough matched for that), but rather because they give insights into fuel use by a university fleet in a northern climate.

Table 15 lists the average fuel economy observed for the entire thirteen-month study for each of the test vehicles. Two of the vehicles were sold, leading to unmatched pairs. Consequently, neither vehicle in such pairs was considered in the averages. The average fuel economy for the test fleet over the course of the project was relatively low: 11.9 mpg for the vehicles operating on E0, and 11.8 mpg for the vehicles operating on E20. This represents a 0.6% decrease in average fuel economy for the E20 vehicles. If the difference in fuel economy of individual pairs of vehicles is averaged, however, fuel economy is 1.7% higher for the E20 vehicles; although the 95% confidence interval for the paired fuel economy changes is $+/-6.6 \%$. Thus, neither of these results is statistically significant. Further analysis of the data in Table 15 reveals that the results for two of the vehicle pairs can be considered outliers. In this case, outliers are defined as results that are more than two standard deviations from the mean. The outliers are highlighted in yellow. When these outliers are removed, the E20 vehicles show an average fuel economy decrease of 1.4%. Energy content per gallon of E20 is 6.5% than that of E0, so all of these results would be surprising in a controlled fuel economy study. This is not that sort of a study; the statistical uncertainty is large, and the driving patterns were not matched. These results suggest, however, that although not quite at a 95% level, the fuel economy loss with E20 might not be as large as the decrease in energy content per gallon.

None of the reservations above apply to overall fleet fuel economy figures. According to the US EPA's fuel economy website5, the average city fuel economy for late model pickups and vans is about 15 mpg . The university fleet contains many heavy pickups and vans operating in a start/stop driving cycle and in a cold climate, so that the $12-\mathrm{mpg}$ average is not unexpected. The smaller and hybrid vehicles in the fleet delivered the best fuel economy, while the large heavy-duty pickups delivered the worst. Clearly, downsizing and additional use of hybrids, where the application allows, should be encouraged.

Reductions of petroleum consumption and of emissions of global greenhouse gases are primary drivers for the introduction and expanded use of ethanol, biodiesel, and other renewable fuels. Gains associated with these renewable fuels will be further enhanced if these fuels are used in more fuel-efficient vehicles.

VIII. ACKNOWLEDGEMENTS

The University of Minnesota Mechanical Engineering Department wishes to thank the following organizations and individuals who helped make this project possible:

- The Council of Great Lakes Governors
- The Minnesota Corn Research and Promotion Council
- The Minnesota Department of Agriculture
- The Renewable Fuels Association
- Peter Bouley of the University of Minnesota Climatological Observatory
- Art Dunn of the Minnesota Pollution Control Agency
- Steven Harrington, Assistant Director of the Minnesota Department of Commerce, Weights and Measures Division
- Gene Im, Supervisor of the University of Minnesota's UMore Park
- Harold "Archie" Archibald, Trained Rater
- William Roberts of the University of Minnesota Fleet Services and his staff
- University of Minnesota lay drivers who completed the vehicle driveability evaluation log sheets
- University of Minnesota departments that allowed the use of their vehicles for the purposes of the test program
- Student volunteers who helped with the transportation of vehicles between the University of Minnesota Fleet Services facility and the staging areas for the seasonal trained rater evaluations

IX. REFERENCES

1) ASTM document D 4814, "Standard Specification for Automotive Spark-Ignition Engine Fuel."
2) Chevron Products Company document, "Technical Review of Motor Gasolines."
3) Coordinating Research Council, Inc., 2003 CRC Intermediate-Temperature Volatility Program, CRC Report No. 638, February 2004.
4) Coordinating Research Council, Inc., 2006 CRC Hot-Fuel-Handling Program, CRC Report No. 648, January 2007.
5) http://www.epa.gov/otaq/cert/mpg/fetrends/420r07008.pdf
6) Ethanol RFA Website - http://www.ethanolrfa.org/industry/statistics/

APPENDIX A

DAILY LOG SHEET PROCEDURES

1. Write down your 'LICENSE PLATE \#' (or vehicle\#), ‘MONTH’ and ‘DATE’(Mondays’s date of the week).

NOTE: You could leave the temperature \rightarrow blank. Write it down if known.
2. Fill in the 'ODOMETER READING' daily.

NOTE: Cold engine means vehicle that has not been USED for more than 6 hours. And, only valid for about 10 minutes from the first second of idle. The rest of the day you will have warm engine. In short, most of you will only have 1 cold engine and many warm engine of at least 1 .
3. Turn key to on position for 2 seconds, meanwhile, turn on defrost and fan in low position. Then, start up the engine and record the time it takes you to crank up the engine on the 'START TIME (SEC)' with 5 seconds max.
4. There may be a total of 3 attempts recorded. When the engine fails, give 5 seconds interval between each attempt. After the $3^{\text {rd }}$ unsuccessful attempt, turn the key to off position before attempting to restart. Once the engine start, record the '\# ATTEMPTS’
5. Let the engine run on idle while transmission is on park or neutral for 5 seconds. Record the idle quality in 'IDLE QUALITY (P/N)'. G=Good; S=Stall; 1-2-3 = measure of quality with 3 being the worst.
6. Next, step on the brake and shift the transmission to drive. Let the engine idle in that position for 5 seconds. Record the idle quality in 'IDLE QUALITY (D)'. G=Good; $\mathrm{S}=$ Stall; 1-2-3 = measure of quality with 3 being the worst.
7. Record all abnormal driving behavior in the engine 'DRIVEAWAY'. Cold engine only applicable for the $1^{\text {st }} 10$ minutes. Anything beyond the $1^{\text {st }} 10$ minutes of the day will fall to warm engine. If everything is normal, there is a 'NORMAL' box and please put a check mark.

Please fill the log sheet up accurately and daily. Mostly when it comes to abnormalities. Use pump \#1, \#2 or \#6 at Como facility for test vehicles. Don't fill up your vehicle elsewhere unless you are far from base and running out of fuel. Fuels from other sources may be quite different from the test fuels. If it is necessary to obtain fuel elsewhere only take enough to get you back to base. Report incorrect fueling immediately.

APPENDIX B

APPENDIX B

Category	Equip \#	Fuel	Class	Year	Make	Model	Engine Configuration	Pairs	VIN \#	License \#	Milage as 3/1/06
3/4 Ton 4X4 Pick-Up	32574	E-0	LT4	2003	Ford	F250	Triton V8-5.4 L. SOHC/EFI 250-260 HP	L	1FTNF21L43EA65966	914206	8,124
3/4 Ton 4X4 Pick-Up	32575	E-20	LT4	2003	Ford	F250	Triton V8-5.4 L. SOHC/EFI 250-260 HP	L	1FTNF21L63EA65967	913339	11,105
12 Passanger Full Size Van	61266	E-20	PF12	2006	Chevrolet	Express	6.0 L - V8	LL	1GAHG35U161131011	921912	4,674
12 Passanger Full Size Van	61265	E-0	PF12	2006	Chevrolet	Express	6.0 L - V8	LL	1GAHG35U641129737	921911	3,474
$3 / 4$ Ton 4X4 Pick-Up	62571	E-20	LT4	2006	Chevrolet	K2500	6.0 liter - V8	M	1GCHK24U66E132567	922079	3,991
3/4 Ton 4X4 Pick-Up	62570	E-0	LT4	2006	Chevrolet	K2500	6.0 liter - V8	M	1GCHK24U36E135281	922080	2,635
15 Passanger Full Size Van	41289	E-20	PF15	2004	Chevrolet	Express 3500	6.0 liter - V8	MM	1GAHG39UX41197435	917503	38,732
15 Passanger Full Size Van	41288	E-0	PF15	2004	Chevrolet	Express 3500	6.0 liter - V8	MM	1GAHG39U441197379	916370	33,519
3/4 Ton CrewCab 4X4 Pick-Up	2961	E-0	LTC4	2001	Chevrolet	K2500	8.1 liter - V8	N	1GCHK29G61E219381	908704	16,565
3/4 Ton CrewCab 4X4 Pick-Up	2962	E-20	LTC4	2001	Chevrolet	K2500	8.1 liter - V8	N	1GCHK23G61F116271	908694	26,110
15 Passanger Full Size Van	51292	E-0	PF15	2005	Chevrolet	Express 3500	6.0 liter - V8	NN	1GAHG39U951243239	921875	4,732
15 Passanger Full Size Van	51293	E-20	PF15	2005	Chevrolet	Express 3500	6.0 liter - V8	NN	1GAHG39UX51268828	921904	10,766
3/4 Ton SuperCab 4X4 Pick-Up	23572	E-0	LTS4	2002	Chevrolet	K2500	6.0 liter - V8	0	1GCHK24UX2E265312	911296	21,664
3/4 Ton SuperCab 4X4 Pick-Up	23573	E-20	LTS4	2002	Chevrolet	K2500	6.0 liter - V8	O	1GCHK24U22E264977	911297	19,736
Misc Truck	2771	E-20	MMIS	2000	Ford	F450	Triton V10-6.8L Gasoline SOHC/EFI 305-310 HP	P	1FDXF46SXYEE09307	906508	29,733
Misc Truck	2770	E-0	MMIS	2000	Ford	F450	Triton V10-6.8L Gasoline SOHC/EFI 305-310 HP	P	1FDXF46SXYEB80093	905351	20,131
8 Passanger Full Size Van	32225	E-20	PF8	2003	Ford	E150	Triton V8-4.6 L SOHC-EFI (W) 225-239HP	Q	1FMRE11L63HA25624	913343	6,063
8 Passanger Full Size Van	32224	E-0	PF8	2003	Ford	E150	Triton V8-4.6 L SOHC-EFI (W) 225-239HP	Q	1FMRE11L43HA19272	913334	17,712
Extenden Mini Passanger Van	42168	E-O	PME	2004	Dodge	Grand Caravan	2.4 liter - 14 - MPI	R	1D4GP24R04B546180	915298	13,503
Extenden Mini Passanger Van	42169	E-20	PME	2004	Dodge	Grand Caravan	2.4 liter - 14 - MPI	R	1D4GP24R24B543460	915292	7,626
Extenden Mini Passanger Van	51184	E-0	PME	2005	Dodge	Grand Caravan	3.8 LITER	S	2D4GP44L95R529436	920146	20,805
Extenden Mini Passanger Van	51185	E-20	PME	2005	Dodge	Grand Caravan	3.8 LITER	S	2D4GP44L05R529437	920147	21,299
Mini Utility 4 Door 4X4	2822	E-0	UM44	2001	Ford	Explorer	Essex 4 liter SOHC Gasoline 207-210	T	1FMZU72E51ZA40287	908451	21,259
Mini Utility 4 Door 4X4	2823	E-20	UM44	2001	Ford	Explorer	Essex 4 liter SOHC Gasoline 207-210	T	1FMZU72E71ZA40288	907420	20,920
Mini Utility 4 Door 4X4	51316	E-0	UM44	2005	Ford	Escape	HYBRID Triton 4.6L DOHC 300HP	U	1FMCU96H85KC96475	919869	21,815
Mini Utility 4 Door 4X4	51317	E-20	UM44	2005	Ford	Escape	HYBRID Triton 4.6L DOHC 300HP	U	1FMCU96HX5KC96476	919870	21,823
Mini Step Van	2766	E-20	UMSV	2000	WorkHorse	UCBC	4.3 L - V6 (code "W")	V	5B4GP32WXY3322531	906522	15,894
Mini Step Van	2765	E-0	UMSV	2000	WorkHorse	UCBC	4.3 L - V6 (code "W")	v	5B4GP32W1Y3322529	906512	17,190
Mini Step Van	2768	E-20	UMSV	2000	WorkHorse	UCBC	4.3 L - V6 (code "W")	w	5B4GP32W4Y3322539	906514	12,854
Mini Step Van	2767	E-0	UMSV	2000	WorkHorse	UCBC	4.3 L - V6 (code "W")	w	5B4GP32W7Y3322535	906513	11,471
Mini Step Van	2772	E-20	UMSV	2000	WorkHorse	UCBC	4.3 L - V6 (code "W")	X	5B4GP32W1Y3323180	906523	11,436
Mini Step Van	2769	E-0	UMSV	2000	WorkHorse	UCBC	4.3 L - V6 (code "W")	X	5B4GP32W3Y3323164	907326	10,107
Mini Cargo Van	2041	E-20	VMC	2000	Chevrolet	Astro	4.3 L - V6 (code "W")	Y	1GCDM19W9YB183594	905927	22,945
Mini Cargo Van	2040	E-0	VMC	2000	Chevrolet	Astro	4.3 L - V6 (code "W")	Y	1GCDM19W5YB187397	905926	22,013
Mini Cargo Van	2099	E-20	VMC	2000	Chevrolet	Astro	4.3L - V6 (code "W")	z	1GCDM19WOYB180681	905907	15,653
Mini Cargo Van	2096	E-O	VMC	2000	Chevrolet	Astro	4.3 L - V6 (code "W")	z	1GCDM19W9YB156203	905354	18,379

TABLES AND FIGURES

Table 1 - Fuel Shipment Dates

E0	E20
$6 / 22 / 2006$	$6 / 22 / 2006$
$7 / 6 / 2006$	$7 / 6 / 2006$
$7 / 19 / 2006$	$8 / 24 / 2006$
$8 / 10 / 2006$	$9 / 13 / 2006$
$8 / 24 / 2006$	$10 / 31 / 2006$
$9 / 8 / 2006$	$1 / 8 / 2007$
$9 / 28 / 2006$	$2 / 28 / 2007$
$10 / 27 / 2006$	$3 / 28 / 2007$
$11 / 6 / 2006$	$5 / 23 / 2007$
$11 / 22 / 2006$	$8 / 8 / 2007$
$12 / 5 / 2006$	
$1 / 4 / 2007$	
$1 / 31 / 2007$	
$2 / 21 / 2007$	
$2 / 28 / 2007$	
$3 / 13 / 2007$	
$3 / 23 / 2007$	
$4 / 23 / 2007$	
$5 / 2 / 2007$	
$5 / 21 / 2007$	
$6 / 11 / 2007$	
$6 / 22 / 2007$	
$7 / 20 / 2007$	
$8 / 7 / 2007$	

Table 2 - Fuel Specifications

Month	Vapor Lock Protection	Distillation Class
Jan	5	E
Feb	5	E
Mar	$5-4$	E/D
April	4	D/A
May	4	A
June	3	A
July	3	A
Aug	3	A
Sep	3	A/C
Oct	$3-4$	C/D
Nov	$4-5$	D/E
Dec	5	E

Vapor Lock Protection	
	TVL=20 (F)
1	140
2	133
3	124
4	116
5	105
6	95

Volume Percent by ASTM D4815
Note: Summer Class A limits apply May 1 through September 15 RVPE is referenced in ASTM D4814
P absolute $=P$ total $-P$ gas
RVPE $=0.965(P$ total $)-0.0(P$ gas $)-0.055$

Distillation Class	Vapor Pressure, max (psi)	Distillation Temperature, at \% Evaporated, max					Distillation Residue, Volume \%, max	Driveability Index
		10\%	50\%		90\%	End Point, max		
			min	max				
AA	7.8	158	170	250	374	437	2	1250
A	9.0	158	170	250	374	437	2	1250
B	10.0	149	170	245	374	437	2	1240
C	11.5	140	170	240	365	437	2	1230
D	13.5	131	150	235	365	437	2	1220
E	15.0	122	150	230	365	437	2	1200

Note: Samples out of specification by more than 1% are colored in cyan. Samples highlighted in red were contaminated.

Delivery date (E20) Sample \#		$\begin{gathered} \hline 1 / 8 / 2007 \\ 33771 \\ \hline \end{gathered}$			$\begin{gathered} 2 / 28 / 2007 \\ 33775 \\ \hline \end{gathered}$		$\begin{gathered} 3 / 28 / 2007 \\ 33778 \\ \hline \end{gathered}$			$\begin{gathered} \hline 5 / 23 / 2007 \\ 33782 \\ \hline \end{gathered}$				$\begin{gathered} \hline 8 / 8 / 2007 \\ 33787 \\ \hline \end{gathered}$
Initial Boiling Point (F @ min)	5-10 min	85.6@6.3			90.1@5.6		92.3@6.2			100.4@6.1				107.7@8
5 ml Recovery (F @sec)	60-100 sec	103.2@75			101.3@83		106@66			113.5@70				123.8@61
10 ml	Class A, D, or E	105			104		110.8			116.4				127.9
T-50 min/max temp.		150/230	150/230	150/230	150/230	150/230	150/235	170/250	170/250	170/250	170/250	170/250	170/250	170/250
50 ml	Class A, D, or E	156.2			154.9		158			156.2				159.4
90 ml	Class A, D, or E	308.3			303.8		312.8			315.3				327.5
EP (mL @F)	Class A, D, or E	98.1@397.4			98.3@391.5		98.1@394.5			98.9@400.8				98@396.6
Residual (mL)	Class A, D, or E	1.7			1.4		1.5			0.9				1.5
DI local max limit		1200	1200	1200	1200	1200	1220	1250	1250	1250	1250	1250	1250	1250
DI	DI=1.5*T10+3*T50+T90	934.4			924.5		953			958.5				997.5
DI (Adjusted to E10)	$\begin{aligned} & \mathrm{DI}=1.5^{*} \mathrm{~T} 10+3^{*} \mathrm{~T} 50+\mathrm{T} 90+2 \\ & .4038^{*} \% \mathrm{Fvol} \text { Etoh } \\ & \hline \end{aligned}$	979.4			972.7		999.1			1003.4				1046.4
Local max vapor press. limit.		E/15.0			E/15.0		D/13.5			A/9.0				A/9.0
P total(PSI) @ 100 F	Class A, D, or E	15.21			15.21		11.4			11.82				9.62
P gas(PSI) @ 100F	Class A, D, or E	0.81			0.96		0.68			0.57				0.71
P absolute(PSI) @100F	Class A, D, or E	14.4			14.26		10.75			11.26				8.91
RVPE(PSI) @100F	Class A, D, or E	14.62			14.62		10.95			11.35				9.23
Local TVL20 mim. temp ${ }^{\circ} \mathrm{F}$		$5 / 105^{\circ}$			$5 / 105^{\circ}$		$4 / 116^{\circ}$			$4 / 116^{\circ}$				$3 / 124^{\circ}$
TVL20 (F)		105			103.9		115.4			118.9				121.46
Ethanol (\%)		18.74			20.05		19.18			18.66				20.33
MTBE (\%)		0			0		0			0				0
Benzene (\%)		0.85			0.79		0.91			0.84				0.88
Relative density	60F \& 731mmHg	0.7245			0.729		0.7398			0.7398				0.7426
API Gravity	60 F \& 731 mmHg	63.82			62.6		59.78			59.76				59.05

[^0]Table 4a - FALL 2006 E0 AND E20 INSPECTIONS

INSPECTIONS	FALL EO	FALL E20	ASTM
Delivery Dates	$9 / 08$ and $9 / 28 / 07$	$9 / 13$ and $10 / 31 / 07$	-
Vol $\%$ Ethanol	0	21.1	-
$\mathrm{T}_{10}{ }^{\circ} \mathrm{F}$	126	117.0	131
$\mathrm{~T}_{50}{ }^{\circ} \mathrm{F}$	207	154.0	$150 / 235$
$\mathrm{~T}_{90}{ }^{\circ} \mathrm{F}$	325	317.0	365
$\mathrm{DI}^{(1)}, \max$	1136	950.0	1220
$\mathrm{TVL} 20, \min$	137	121.0	116

(1) DIs of E20 samples were calculated according to the following equation:
$\mathrm{DI}=(1.5)\left(\mathrm{T}_{10}\right)+(3.0)\left(\mathrm{T}_{50}\right)+(1.0)\left(\mathrm{T}_{90}\right)+(2.404)(\mathrm{Vol} \%$ Etoh $)$

Table 4b - WINTER 2006/2007 EO AND E20 INSPECTIONS

INSPECTIONS	WINTER EO	WINTER E20	ASTM
Delivery Dates	$1 / 04$ and $2 / 21 / 07$	$1 / 08$ and $2 / 28 / 07$	-
Vol $\%$ Ethanol	0	19.4	-
$\mathrm{T}_{10}{ }^{\circ} \mathrm{F}$	106	105.0	122
$\mathrm{~T}_{50}{ }^{\circ} \mathrm{F}$	199	156.0	$150 / 230$
$\mathrm{~T}_{90}{ }^{\circ} \mathrm{F}$	318	306.0	365
$\mathrm{DI}^{(1}$, max	1074	976.0	1200
TVL 20, min	10	105.0	105

(1) DIs of E20 samples were calculated according to the following equation:
$\mathrm{DI}=(1.5)(\mathrm{T} 10)+(3.0)(\mathrm{T} 50)+(1.0)(\mathrm{T} 90)+(2.404)(\mathrm{Vol} \%$ Etoh $)$

INSPECTIONS	SPRING EO	SPRING E20	ASTM
Delivery Dates	$3 / 23 / 07$	$3 / 28 / 07$	-
Vol \% Ethanol	0	19.2	-
$\mathrm{T} 10^{\circ} \mathrm{F}$	106	111.0	131
$\mathrm{~T} 50^{\circ} \mathrm{F}$	196	158.0	$150 / 235$
$\mathrm{~T} 0^{\circ} \mathrm{F}$	316	313.0	365
$\mathrm{DI}{ }^{(1}$, max	1064	999.0	1220
TVL 20, min	$106^{(2}$	$115.0^{(2}$	16

(1) DIs of E20 samples were calculated according to the following equation:
$\mathrm{DI}=(1.5)(\mathrm{T} 10)+(3.0)(\mathrm{T} 50)+(1.0)(\mathrm{T} 90)+(2.404)(\mathrm{Vol} \%$ Etoh $)$
${ }^{(2)}$ The noted TVL 20's are not transposed nor are they typographical errors. ${ }^{\circ}$ Refer to the discussion on page 11° beginning at paragraph three.

Table 4d - SUMMER 2006 EO AND E20 INSPECTIONS

INSPECTIONS	SUMMER EO	SUMMER E20	ASTM
Delivery Dates	$6 / 22$ and $7 / 06 / 06$	$6 / 22$ and $7 / 06 / 06$	-
Vol $\%$ Ethanol	0	19.7	-
$\mathrm{T} 10^{\circ} \mathrm{F}$	129	121.0	158
$\mathrm{~T} 50^{\circ} \mathrm{F}$	208	155.0	$170 / 250$
$\mathrm{~T} 90^{\circ} \mathrm{F}$	333	311.0	374
$\mathrm{DI}{ }^{(1)}, \max$	1151	1006.0	1250
TVL 20, min	140	126	124

(1) DIs of E20 samples were calculated according to the following equation:

DI $=(1.5)(\mathrm{T} 10)+(3.0)(\mathrm{T} 50)+(1.0)(\mathrm{T} 90)+(2.404)($ Vol $\%$ Etoh $)$
Table 5 - Vehicle Driveability Log Sheet

		Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Cold Start Temperature Odometer Reading								
Engine Block Heater used?(Oct-Apr) Yes/No								
Cold Crank Start Time (sec) \# attempts Cold Start Smooth/Rough Cold Engine Idle Quality (Park/Neutral) Smooth/Rough Cold Engine Idle Quality (Drive)								
Cold Engine Drivewaway (Check One when applicable)	Normal							
	Stall ${ }^{1}$ a							
	Hesitation ${ }^{2}$							
	Stumble ${ }^{3}$							
	Surge ${ }^{4}$							
	Backfire ${ }^{5}$							
Warm Engine Start Time (sec) \# attempts Warm Start Smooth/Rough Warm Engine Idle Quality (Park/Neutral) Smooth/Rough Warm Engine Idle Quality (Drive)								
Warm Engine Drivewaway (Check One when applicable)	Normal							
	$\text { Stall }^{12} \text { a }$							
	Hesitation ${ }^{2}$							
	Stumble ${ }^{3}$							
	$\text { Surge }{ }^{4}$							
	Backfire ${ }^{5}$							

Driver Comments:
5 A popping/backfire noise in the intake or exhaust systems
Table 6a - Vehicle Description and Lay Driver Reporting Frequency (Both Vehicles of Matched Pair Reporting)

Year Make	Model	Engine	Pair	License	Summer \% 17 wk	E0 Fall $\%$ 13 wk	Winter \% 14 wk	Spring \% 14 wk	License	Summer \% 17 wk	E20 Fall $\% 13 \mathrm{wk}$	Winter \% 14 wk	$\begin{array}{\|c} \text { Spring } \\ \% \\ \hline 14 \mathrm{wk} \end{array}$
2005 Ford	Crown Victoria	Modular V8-4.6 L	E	51	0.00	0.00	15.31	0.00	52	0.00	24.18	20.41	0.00
2003 Ford	Focus	Zetec 2 liter DOHC	F	911099	0.00	40.66	58.16	52.94	911225	69.39	65.93	61.22	66.39
2003 Ford	Focus	Zetec 2 liter DOHC	G	914202	33.67	56.04	39.80	6.72	914204	0.00	39.56	55.10	32.77
2003 Ford	F450	Triton V10-6.8L Gas	H	914210	54.08	67.03	51.02	57.14	914209	68.37	65.93	53.06	64.71
2005 Ford	Ranger	Intec V8-5.4 L	I	919310	68.37	26.37	34.69	5.04	919309	30.61	47.25	7.14	0.00
2005 Ford	Ranger	Intec V8-5.4 L	J	918524	72.45	83.52	58.16	2.52	918518	62.24	42.86	51.02	42.02
2003 Dodge	Dakota	3.9 liter V6 MPI	K	914228	56.12	52.75	44.90	45.38	914226	47.96	59.34	55.10	54.62
2003 Ford	F250	Triton V8-5.4L	L	914206	45.92	47.25	35.71	24.37	913339	43.88	49.45	15.31	0.00
2006 Chevy	K2500	6.0 liter - V8	M	922080	21.43	15.38	0.00	0.00	922079	58.16	20.88	0.00	4.20
2001 Chevy	K2500	8.1 liter - V8	N	908704	18.37	52.75	4.08	0.00	908694	58.16	45.05	53.06	12.61
2002 Chevy	K2500	6.0 liter - V8	O	911296	57.14	39.56	52.04	51.26	911297	63.27	47.25	30.61	46.22
2000 Ford	F250	Triton V10-6.8L Gas	P	905351	48.98	53.85	58.16	43.70	906508	62.24	39.56	16.33	67.23
2000 UCBC	WorkHorse	4.3 L - V6 (code "W")	V	906512	4.08	58.24	62.24	0.00	906522	60.20	63.74	63.27	62.18
2000 UCBC	WorkHorse	4.3 L - V6 (code "W")	W	906513	47.96	0.00	0.00	0.00	906514	67.35	68.13	54.08	42.02
2000 UCBC	WorkHorse	4.3L - V6 (code "W")	X	907326	0.00	37.36	10.20	0.00	906523	64.29	50.55	52.04	63.87
2000 Chevy	Astro	4.3 L - V6 (code "W")	Z	905354	26.53	20.88	20.41	0.00	905907	55.10	60.44	46.94	0.00
2002 Dogde	Ram1500	4.3 L - V6 (code "X")	BB	911065	0.00	1.10	0.00	0.00	911233	13.27	10.99	0.00	0.00
2004 Chevy	Astro	4.3 L - V6 (code "X")	CC	916330	0.00	47.25	57.14	66.39	916332	0.00	46.15	59.18	59.66
2005 Chevy	Astro	4.3 L - V6 (code "X")	DD	918510	68.37	61.54	64.29	64.71	918512	59.18	42.86	61.22	66.39
2000 Ford	E350	Triton V8-4.6 L	EE	905945	29.59	0.00	0.00	0.00	905943	21.43	30.77	33.67	0.00
2001 Ford	E250	Triton V8-4.6 L	HH	908468	63.27	60.44	58.16	65.55	908685	59.18	63.74	56.12	58.82
2001 Ford	E250	Triton V8-5.4 L.	11	908684	64.29	63.74	56.12	64.71	908467	38.78	61.54	65.31	68.07
2002 Ford	E250	Triton V8-5.4 L.	KK	909216	37.76	0.00	0.00	0.00	909215	19.39	12.09	26.53	3.36

Table 6b - Vehicle Description and Lay Driver Frequency (Only E0 of the Pair Reporting)

Table 6c - Vehicle Description and Lay Driver Frequency (Only E20 of the Pair Reporting)

Table 7 - Summary of Responses to Surveys

$\begin{array}{\|l} \text { Fuel } \\ \text { Type } \end{array}$	Pair	License	Date	$\begin{gathered} \hline \text { 6/22/2006 - 9/30/2006 \& 07/01/2007 } \\ \text { Summer Events - Frequency } \end{gathered}$	n1	$\begin{aligned} & 10 / 1 / 2006-12 / 31 / 20006 \\ & \text { Fall Events - Frequency } \\ & \hline \end{aligned}$	n2	$\begin{gathered} 01 / 01 / 2007-03 / 31 / 2007 \\ \text { Winter Events - Frequency } \\ \hline \end{gathered}$	n3	04/01/2007-06/29/2007 Spring Events - Frequency	n4
E0	A	907376	7/3/2006-8/18/2006	Mediocre roughness on cold Idle on both P/N and D. Slightly longer (2 sec) cold crank time. Un-reported warm condition.	31						
E20	A	907395	6/26/2006-6/27/2006	Slightly longer (2 sec) cold and warm crank time	2						
E0	E	51 51 51						2 attempts of crank with 2 sec crank time, slight roughness on idle on P / N and mediocre idle on D with cold engine 2 sec cold cranktime and hesitation on cold driveaway. 3 attempts of crank with 2 sec crank time, slight roughness on idle on P/N and harsh dle on D with cold engine. Surge in warm Mediocre roughness on warm idle P/N	1		
$\begin{aligned} & \mathrm{E} 20 \\ & \mathrm{E} 20 \\ & \mathrm{E} 20 \\ & \mathrm{E} 20 \\ & \hline \end{aligned}$	E	52 52 52 52 5	$11 / 7,11,12 / 2006$ $11 / 25 \& 26 / 2006$ $12 / 25 / 2006$ $2 / 10 / 2007$			Slight rough on warn idle both P/N and D Slight rough on cold and warm idle both P/N and D Stall while accelerate on warm driveaway		Slight rough on cold idle both P/N and D			
$\begin{aligned} & \text { EO } \\ & \text { EO } \\ & E O \end{aligned}$	$\stackrel{\text { F }}{\text { F }}$	$\begin{array}{\|l\|l\|} \hline 911099 \\ 91109 \\ 911099 \\ 911099 \\ 911099 \\ 911099 \\ 911099 \end{array}$	$11 / 712006$ $1 / 8-182007$ $1 / 8 / 2007-3 / 30 / 2007$ $1 / 16 / 2007-3 / 28 / 2007$ $1 / 30 / 2007,2 / 8 / 2007$ $04 / 02 / 2007-4 / 1112007$ $4 / 20 / 2007$			Stumble on warm driveaway		2 sec cold crank time 2 sec cold crank time 2 sec warm crank time 3 sec cold crank time	$\begin{array}{r} 7 \\ 38 \\ 28 \\ 28 \end{array}$	2 sec cold and warm crank time Mediocre roughness on warm idle on both P/N and D	
$\begin{aligned} & \mathrm{E} 20 \\ & \hline \end{aligned}$	F $\begin{aligned} & \text { F } \\ & \mathrm{F} \\ & \mathrm{F} \\ & \mathrm{F} \\ & \mathrm{F} \\ & \mathrm{F}\end{aligned}$		$7 / 17 / 2006$ $12 / 4,5,7 / 2006$ $1 / 16 / 2007-3 / 6 / 2007$ $4 / 5,6,9,11 / 2007$ $5 / 16 / 2007$	Stalled twice not long atter cold start.		2 sec cold crank time		2 sec cold crank time for 26% of the time. 3 sec cold crank time for 23% of the time. 5 sec cold crank time for 3% of the time		2 sec cold crank time and 1 of 2 cold crank attempt. 5 sec cold crank time	
$\begin{array}{\|l} \text { EO } \\ \text { EO } \\ \text { EO } \end{array}$	G G	$\begin{array}{\|l\|l\|} \hline 914202 \\ 914202 \\ 914202 \end{array}$	$11 / 10 / 2006$ $11 / 11 / 2006,125 / 2006$ $2 / 13 / 2007$			Hesitation on complete stop 2 sec cold crank time.		3 sec cold crank time, harsh cold idle on both P/n and D			
E20 E20 E20 E20 E20 E E20 E20 E20 E20 E20 E20	G G	914204 914204 914204 914204 914204 914204 914204 914204 914204 914204	101/31/06-11/22106 10/31/2006-11/2/2006 11/31/2006-12/29/2006 1/3/2007-3/30/2007 1/4/2007, 2/5,8,9/2007 3/2/2007 $3 / 2 / 2007$ $3 / 812007$ 4/5/2007 5/11/2007			a little rough on P/N and D idle with either 2 sec cold crank time. Slight rough on cold and warm idle both P/N and D. 2 sec cold crank time 18% of the time	21	Slight rough on cold and warm idle both P/N and D 2 sec cold crank time Harsh cold idle on P/N Mediocre roughness on warm idle D		2 sec cold and warm crank time 2 sec cold crank time Mediocre roughness on cold idle on D.	1

Table 7 (Continued) - Summary of Responses to SurveysTable 7 (Continued) - Summary of Responses to Surveys

Table 7 (Continued) - Summary of Responses to Surveys

Table 7 (Continued) - Summary of Responses to Surveys

Table 7 (Continued) - Summary of Responses to Surveys

Table 7 (Continued) - Summary of Responses to Surveys

Table 8 - Summary of Lay Drivers' Reports and Driveability Events

Events reported	Fuel Type	
	E0	E20
Total weekly report forms submitted		
Summer	490	424
Fall	242	386
Winter	383	357
Spring	220	188
Overall	1335	1355
Number of vehicles reporting events (\%)		
Summer	17 43\%	15 38\%
Fall	12 30\%	14 35\%
Winter	23 58\%	14 35\%
Spring	7 18\%	20\%
Average Quaterly Rep. Events	15 37\%	13 32\%
Summary of response rates		
	\% response.	
	E0	E20
Through Summer	31.6\%	36.0\%
Through Fall	35.0\%	40.8\%
Through Winter	33.7\%	39.1\%
Through Spring	31.8\%	39.2\%
Overall summary of response rates		
Number of sheets completed	724	893
Possible Sheets ($57 \mathrm{wks} * 40$)	2280	2280
\% response.	31.75\%	39.17\%

Table 9 - Lay Driver Demerit Score Conversion

	Crank Time	\# Attempt	P/N \& D	Drivaway
Blank	2	4	2	3
Good	--	----	0	0
1	0	0	2	----
2	1	8	4	----
3	2	16	8	----
4	4	24	----	----
5	8	32	--	----
6	----	40	----	----
7	----	48	----	----
8	----	56	----	----
Hesitation	----	----	----	2
Stumble	----	----	----	4
Surge	----	----	----	8
Stall-A	----	----	12	12
Stall-B	----	----	----	16
Backfire	----	----	----	24

Table 10a - Average and 95\% Confidence Intervals of Lay Driver
Demerit Scores: Results are weighted by total number of reports.
Results shown only for paired vehicles, both reporting. Shaded results are statistically different at a 95% confidence level.

Fuel	E0		E20	
Season	Ave. demerits	95% Cl	Ave. demerits	95\% Cl
Summer	5.84	0.51	5.89	0.46
Fall	5.29	0.59	6.49	0.58
Winter	4.59	0.49	5.13	0.58
Spring	2.95	0.41	4.97	0.56

Table 10b - Average and 95\% Confidence Intervals of Lay Driver
Demerit Scores: Results are weighted by averages for individual vehicles. Results shown only for paired vehicles, both reporting. None of the differences between E0 and E20 are statistically significant.

Fuel	E0		E20	
Season	Ave. demerits	$95 \% \mathrm{Cl}$	Ave. demerits	95\% Cl
Summer	7.09	3.36	7.15	3.23
Fall	5.94	3.72	5.40	3.30
Winter	5.70	3.35	5.48	2.80
Spring	3.28	2.84	5.76	3.42

Table 11 - Average Lay Driver Demerit Scores Grouped by Vehicle and Season
Count denotes number of reports received. Results are only shown for paired vehicles in each season.

Pair	Fuel	Summer		Fall		Winter		Spring	
		Score	Count	Score	Count	Score	Count	Score	Count
2	E0			26.0	1				
2	E20			0.0	10				
3	E0	8.0	13	0.7	43	2.3	56	9.0	64
3	E20	8.0	18	14.0	42	15.4	58	14.4	53
4	E0	2.1	88	0.0	56	0.0	62	0.0	56
4	E20	1.0	73	0.0	39	0.0	60	0.0	63
5	E0	13.4	29						
5	E20	15.6	21						
8	E0	8.3	78	6.9	55	6.9	56	8.0	62
8	E20	6.5	77	6.6	58	4.3	55	6.5	51
9	E0	0.0	81	0.0	58	0.0	55	0.0	59
9	E20	5.9	63	2.0	56	2.0	63	3.4	56
11	E0	2.0	37						
11	E20	4.4	23						
A	E0	23.7	31						
A	E20	1.4	65						
E	E0	15.0	4			11.1	15		
E	E20	26.0	5			5.6	20		
F	E0	0.0	14	1.0	35	1.4	57	1.0	49
F	E20	0.4	87	0.3	60	1.0	60	0.3	60
G	E0			7.3	52	11.1	39	11.4	8
G	E20			9.4	36	8.2	55	10.2	39
H	E0	1.9	72	0.6	61	1.6	49	2.0	49
H	E20	0.0	81	0.0	60	0.0	52	0.3	63
I	E0	4.8	51	4.0	40	3.1	34		
I	E20	8.1	30	6.8	43	5.4	7		
J	E0	3.5	71	1.4	78	5.7	59	0.0	3
J	E20	6.1	67	6.6	39	18.5	50	4.7	44
K	E0	1.2	60	0.3	38	0.0	44	0.4	49
K	E20	11.6	61	7.6	54	10.1	55	13.5	51
L	E0	8.9	50	5.9	43	11.4	35		
L	E20	11.1	43	1.0	46	7.0	15		
M	E0	26.0	57	26.0	15				
M	E20	22.6	62	26.0	19				
N	E0	11.2	18	13.1	48	20.5	4		
N	E20	4.1	57	0.0	41	0.0	52		
0	E0	4.8	75	11.7	36	3.9	51	4.3	42
O	E20	7.2	81	18.2	43	6.6	30	6.4	37
P	E0	0.0	52	0.1	49	0.0	57	0.0	48
P	E20	3.8	80	5.5	36	7.8	16	3.6	61
T	E0	6.1	51	5.7	16				
T	E20	6.3	64	0.0	46				
V	E0			0.0	53	17.8	59		
V	E20			2.8	58	1.4	62		
Y	E0	0.5	55	0.8	32	0.0	20		
Y	E20	0.0	1	1.2	46	0.0	51		
Z	E0	7.5	26	7.2	19				
Z	E20	0.0	53	0.0	55				

Table 12 - Trained Raters' Scores

Car	License	Pair	Fuel	Fall			Winter			Spring			Summer	
				Run \#	twd	log twd+1	Run \#	twd	\log twd+1	Run \#	twd	$\log t w d+1$	twd	log twd +1
42405	916330	CC	E-0	9	6	1.9459	10	10.5	2.4423	9	17	2.8904	13	2.6391
42406	916332	CC	E-20	8	9	2.3026	10	19.5	3.0204	6	32	3.4965	30	3.4340
2464	905945	EE	E-0	5	6	1.9459	,	21.5	3.1135	7	36	3.6109	36.5	3.6243
2465	905943	EE	E-20	9	7	2.0794	7	23.5	3.1987	5	18.5	2.9704	24	3.2189
22471	909216	KK	E-0	4	7.5	2.1401	5	27	3.3322	9	22	3.1355	26	3.2958
22472	909215	KK	E-20	7	9	2.3026	2	29.5	3.4177	4	11	2.4849	22	3.1355

Table13- Random Samples Taken from Vehicle Fuel Tanks During Spring Trained Raters Evaluation on April 19, 2007

Vehicle \#	Lab ID	Volume \% ETOH
2823	33796	20.17
2820	33797	0.00
42405	33798	18.74
42406	33799	0.00
2464	33800	19.75
2465	33801	0.00
2765	33802	19.70
2766	33803	0.00

Table 14- Random Samples Taken from Vehicle Fuel Tanks During Summer Trained Raters Evaluation on July 29, 2007

Vehicle \#	Lab ID	Volume \% ETOH
32225	33826	8.06
209	33827	0
32224	33828	0
22472	33829	18.24
2460	33830	0
2465	33831	18.62

Possible contaminated sample for Vehicle 32225

Table 15 - Summary of Fuel Economy Measurements: Differences refer to percentage change in fuel economy with EO the base case. Outliers are highlighted in yellow.

	E0			E20				
Pair	VID	YEAR MAKE MODEL	MPG	VID	YEAR	MAKE MODEL	MPG	\%Ch
A	002302	2001 FORD FOCUS	18.9	2320	2001	FORD FOCUS	SOLD	--
AA	021401	2002 DODGE RAM 1500	10.2	021402	2002	DODGE RAM 1500	8.5	-16\%
B	051046	2005 TOYOTA PRIUS hybrid	40.7	051047	2005	TOYOTA PRIUS hybrid	38.5	-6\%
BB	022403	2002 DODGE RAM 1500	10.0	022404	2002	DODGE RAM 1500	7.2	-28\%
C	051058	2005 CHEVROLET MALIBU	25.9	051059	2005	CHEVROLET MALIBU	26.3	2\%
CC	042405	2004 CHEVROLET ASTRO	12.3	042406	2004	CHEVROLET ASTRO	11.9	-4\%
D	051085	2005 CHEVROLET IMPALA	22.6	051086	2005	CHEVROLET IMPALA	22.8	1\%
DD	052402	2005 CHEVROLET ASTRO	9.7	052403	2005	CHEVROLET ASTRO	11.2	15\%
E	053096	2005 FORD CROWN VICTORIA	6.9	053097	2005	FORD CROWN VICTORIA	7.1	4\%
EE	002464	2000 FORD E350	6.6	002465	2000	FORD E350	6.3	-5\%
F	022020	2003 FORD FOCUS	14.7	022021	2003	FORD FOCUS	18.2	24\%
FF	002477	2001 CHEVROLET EXPRESS 3500	9.3	002478	2001	CHEVROLET EXPRESS 3500	7.6	-18\%
G	032033	2003 FORD FOCUS	17.6	032034	2003	FORD FOCUS	18.6	6\%
GG	002535	2000 CHEVROLET EXPRESS 2500	7.2	002539	2000	CHEVROLET EXPRESS 2500	8.5	19\%
H	032644	2003 FORD F350	6.7	032674	2003	FORD F450	4.2	-37\%
HH	002479	2001 FORD E250	7.6	002480	2001	FORD E250	7.2	-6\%
1	073500	2005 FORD RANGER	14.7	073501	2005	FORD RANGER	12.7	-13\%
II	002481	2001 FORD E250	6.0	002482	2001	FORD E250	6.6	11\%
J	073502	2005 FORD RANGER	17.1	073503	2005	FORD RANGER	13.8	-19\%
JJ	002470	2001 FORD E250	7.5	002501	2001	FORD E250	8.2	11\%
K	033542	2003 DODGE DAKOTA	8.4	033543	2003	DODGE DAKOTA	7.8	-6\%
KK	022471	2002 FORD E250	9.2	022472	2002	FORD E250	13.5	47\%
L	032574	2003 FORD F250	8.3	032575	2003	FORD F250	8.2	-1\%
LL	061265	2006 CHEVROLET EXPRESS 3500	13.3	061266	2006	CHEVROLET EXPRESS 3500	13.5	2\%
M	062570	2006 CHEVROLET K2500	7.4	062571	2006	CHEVROLET K2500	6.4	-13\%
N	002961	2001 CHEVROLET K2500	4.1	002962	2001	CHEVROLET K2500	6.8	66\%
NN	051292	2005 CHEVROLET EXPRESS 3500	11.7	051293	2005	CHEVROLET EXPRESS 3500	11.1	-6\%
0	23572	2002 CHEVROLET K2500	--	023573	2002	CHEVROLET K2500	7.5	--
P	002770	2000 FORD F450	4.1	002771	2000	FORD F450	5.2	28\%
Q	032224	2003 FORD E150	9.1	032225	2003	FORD E150	9.3	2\%
R	042168	2004 DODGE GRAND CARAVAN	13.1	042169	2004	DODGE GRAND CARAVAN	12.7	-3\%
S	051184	2005 DODGE GRAND CARAVAN	17.2	051185	2005	DODGE GRAND CARAVAN	15.2	-11\%
T	002820	2001 FORD EXPLORER	14.9	002823	2001	FORD EXPLORER	11.7	-21\%
U	051316	2005 FORD ESCAPE hybrid	23.7	051317	2005	FORD ESCAPE hybrid	24.4	3\%
V	002765	2000 WORKHORSE UCBC	6.4	002766	2000	WORKHORSE UCBC	7.8	22\%
W	002767	2000 WORKHORSE UCBC	7.1	002768	2000	WORKHORSE UCBC	5.8	-18\%
X	002769	2000 WORKHORSE UCBC	6.6	002772	2000	WORKHORSE UCBC	7.2	10\%
Y	002040	2000 CHEVROLET ASTRO	11.2	002041	2000	CHEVROLET ASTRO	13.3	19\%
Z	002096	2000 CHEVROLET ASTRO	9.4	002099	2000	CHEVROLET ASTRO	9.9	6\%

min	4.1	min	4.2	
max	40.7	max	38.5	
Paired Average	11.9	Paired Average	11.8	-0.6\%
		Average difference between pairs		1.7\%
		Standard deviation		19.9\%
		95\% confidence interval		6.6\%
		Average difference outliers removed		-1.4\%

Figure 1a - Distillation Data for E20 Fuels. Summer fuels are plotted in warm colors, winter fuels in cool colors. Also shown are ASTM limits for fuels Class A (summer, May 1 - September 15), Class D (fall, spring, September 16 - November 15, March 16 - April 30), and Class E (winter, November 15 - March 15).

Figure 1b - Average Distillation Data for E20 Fuels. Also shown are ASTM limits for fuels Class A (summer, May 1 - September 15), Class D (fall, spring, September 16 - November 15, March 16 - April 30), and Class E (winter, November 15 - March 15).

Figure 2a - Distillation Data for E0 Fuels. Summer fuels are plotted in warm colors, winter fuels in cool colors. Also shown are ASTM limits for fuels Class A (summer, May 1 - September 15), Class D (fall, spring, September 16 - November 15, March 16 - April 30), and Class E (winter, November 15 - March 15).

Figure 2b - Average Distillation Data for EO Fuels. Also shown are ASTM limits for fuels Class A (summer, May 1 - September 15), Class D (fall, spring, September 16 - November 15, March 16 April 30), and Class E (winter, November 15 - March 15).

Figure 3 -Average Lay Driver Demerit Scores weighted by total number of reports. Error bars show 95% confidence intervals. Results shown only for paired vehicles both reporting. Differences between E0 and E20 reported for summer and winter seasons are not statistically different at a 95\% confidence level.

Figure 4 -Average Lay Driver Demerit Scores weighted by vehicle. Error bars show 95\% confidence intervals. Results shown only for paired vehicles both reporting. None of the differences between E0 and E20 are statistically different at a 95% confidence level.

Figure 5a - Daily Temperature Data (recorded at St. Paul Campus), Summer Period

Figure 5b - Daily Temperature Data (recorded at St. Paul Campus), Fall Period

Figure 5c - Daily Temperature Data (recorded at St. Paul Campus), Winter Period

Figure 5d - Daily Temperature Data (recorded at St. Paul Campus), Spring Period

Figure 6a - Average Trained Raters' Log Transformed Weighted Average Demerits. Error bars show 95% confidence intervals. Results shown only for paired vehicles both reporting. None of the differences between E0 and E20 are statistically different at a 95\% confidence level.

Figure 6b - Average Trained Raters' Weighted Average Demerits. Error bars show 95\% confidence intervals. Results shown only for paired vehicles both reporting. None of the differences between E0 and E20 are statistically different at a 95% confidence level.

Figure 7a - Individual Vehicle Trained Rater Weighted Demerits for Summer Rating Session. Both paired and unpaired vehicles shown.

Figure 7b - Individual Vehicle Trained Rater Weighted Demerits for Fall Rating Session.
Both paired and unpaired vehicles shown.

Figure 7c - Individual vehicle trained rater weighted demerits for winter rating session.
Both paired and unpaired vehicles shown.

Figure 7d - Individual Vehicle Trained Rater Weighted Demerits for Spring Rating Session.
Both paired and unpaired vehicles shown.

[^0]: Note: Samples out of specification by more than 1% are colored in cyan.

