

Möglichkeiten einer europäischen Biogaseinspeisungsstrategie

- Teilbericht II -

im Auftrag der Bundestagsfraktion von Bündnis90/Die GRÜNEN

Darmstadt, Januar 2007

erstellt von

Uwe R. Fritsche Katja Hünecke Klaus Schmidt

Öko-Institut e.V.

Büro Darmstadt Rheinstraße 95 D-64295 Darmstadt Tel.: (06151) 8191-0 Fax: (06151) 8191-33

Büro Berlin

Novalisstraße 10 D-10115 Berlin

Tel.: +49-(0)30-280486-80 Fax: +49-(0)30-280486-88

Geschäftsstelle Freiburg

Merzhauser Str. 173 D-79100 Freiburg Tel.: +49-(0)761-452950 Fax: +49-(0)761-475437

www.oeko.de

Inhaltsverzeichnis

Vo	rbemerkung	1
1	Hintergrund zur ökologischen und sozialökonomischen Analyse der Bioenergiebereitstellung und -nutzung	1
1.1	Methodischer Ansatz	2
1.2	Datengrundlagen zur Umwelt- und sozialökonomischen Analyse	4
2	Sozioökonomische Effekte der Bereitstellung von Strom und Wärme aus Biogas und Bio-SNG	5
2.1	Zusätzliche Wertschöpfung durch die Biomethanbereitstellung	5
2.2	Netto-Bilanzierung der Wertschöpfung	8
2.3	Beschäftigungseffekte durch die Biomethan-Strategie	9
2.4	Weitere volkswirtschaftliche Aspekte von Biomethan.	14
2.5	Zusammenfassung zur sozioökonomischen Analyse	17
3	Umwelteffekte der Bereitstellung von Strom und Wärme	18
3.1	Umwelteffekte der konventionellen Strom- und Wärmebereitstellung	18
3.2	Umwelteffekte der Bereitstellung von Biomethan	20
3.3	Umwelteffekte bei der Nutzung von Biomethan für Strom und Wärme	21
3.4	Zusammenfassung zur Umweltanalyse	24
Lit	eratur	26

Tabellenverzeichnis

Tabelle 1	Zusätzliche Wertschöpfung in der Landwirtschaft durch die Bereitstellung von Substraten für die Biogaserzeugung	5
Tabelle 2	Zusätzliche Wertschöpfung durch die Bereitstellung von Holz für die Bio-SNG-Erzeugung	6
Tabelle 3	Zusätzliche Wertschöpfung durch Bau und Betrieb von Biogasanlagen	7
Tabelle 4	Zusätzliche Wertschöpfung durch Bau und Betrieb von Bio-SNG-Anlagen	7
Tabelle 5	Zusätzliche Wertschöpfung durch Bau und Betrieb von Biogas- und Bio-SNG-Anlagen sowie deren Inputs	8
Tabelle 6	Nettobilanz der zusätzlichen Wertschöpfung bei Ersatz von Erdgas durch Biomethan	9
Tabelle 7	Direkte und indirekte Beschäftigungseffekte der Bereitstellung von Rohstoffen für die Biomethan-Anlagen	10
Tabelle 8	Direkte und indirekte sowie gesamte Beschäftigungswirkung für Bau und Betrieb der Biogas-Anlagen	11
Tabelle 9	Direkte und indirekte sowie gesamte Beschäftigungswirkung für Bau und Betrieb der Bio-SNG-Anlagen	12
Tabelle 10	Gesamte Beschäftigungseffekte der Biomethanbereitstellung	13
Tabelle 11	Summe der Beschäftigungseffekte für die Biomethanbereitstellung	13
Tabelle 12	Monetäre Zusatzeffekte der Biomethanstrategie auf die Staathaushalte	16
Tabelle 13	Bilanzen zu Treibhausgasen und Luftschadstoffen für die heutige Bereitstellung von Strom in europäischen Ländern	18
Tabelle 14	Bilanzen zu Treibhausgasen und Luftschadstoffen für die heutige Bereitstellung von Wärme aus Gasheizungen in europäischen Ländern	19
Tabelle 15	Umweltbilanz der Bereitstellung von Biomethan	21
Tabelle 16	Umweltbilanz der Bereitstellung von Strom und Wärme aus Kraftwerksmix + Gasheizung versus KWK mit Biomethan	22
Tabelle 17	Nettobilanz für Treibhausgase bei der Substitution von Erdgas durch Biomethan	24

Abbildungsverzeichnis

Bild 1	Der Ansatz der Stoffstromanalyse im Bereich Biomasse	2
Bild 2	GEMIS als Datenbank für Stoffstromanalysen	3
Bild 3	Gesamte Beschäftigungseffekte der Biomethan-Strategie	14
Bild 4	Bilanzen zu Treibhausgasen und Luftschadstoffen für die heutige Bereitstellung von Strom in europäischen Ländern	19
Bild 5	Bilanzen zu Treibhausgasen und Luftschadstoffen für die heutige Bereitstellung von Wärme aus Gasheizungen in europäischen Ländern	20
Bild 6	Vergleich der Nutzung von Biogas zur Strom- und Wärmebereitstellung in KWK in osteuropäischen Ländern und DE sowie beim Import nach DE	23
Bild 7	Vergleich der Nutzung von Bio-SNG zur Strom- und Wärmebereitstellung in KWK in osteuropäischen Ländern und DE sowie beim Import nach DE	23
Bild 8	Klimagaseinsparung bei der Substitution von Erdgas durch Biomethan	24

Vorbemerkung

Dieses Papier stellt einen Beitrag zu der Kurzstudie "Möglichkeiten einer europäischen Biogaseinspeisestrategie" dar, die vom Institut für Energetik und Umwelt Leipzig (IE) und Öko-Institut im Auftrag der Bundestagsfraktion von Bündnis90/Die GRÜNEN erstellt wurde.

Das vorliegende Papier betrifft den Arbeitspunkt "Wertschöpfung und Beschäftigung" und gibt auch die Ergebnisse von ergänzend durchgeführten Umweltanalysen wieder, die aus Sicht der Verfasser zur Beurteilung der Nachhaltigkeit von Bioenergie-Importoptionen aus Osteuropa wesentlich sind.

Die sozioökonomischen Analysen zur Wertschöpfung und Beschäftigung (vgl. Kap. 2) folgen dabei der Ländergliederung im Teilbericht I (IE 2007), während die zusätzlich durchgeführten Arbeiten zur Umweltanalyse (vgl. Kap. 3) sich auf die osteuropäischen Länder Russland (RU), Ukraine (UA) und Weißrussland (BY) sowie Polen (PL) und Rumänien (RO) als osteuropäischen EU-Mitgliedsstaaten konzentrieren.

1 Hintergrund zur ökologischen und sozialökonomischen Analyse der Bioenergiebereitstellung und -nutzung

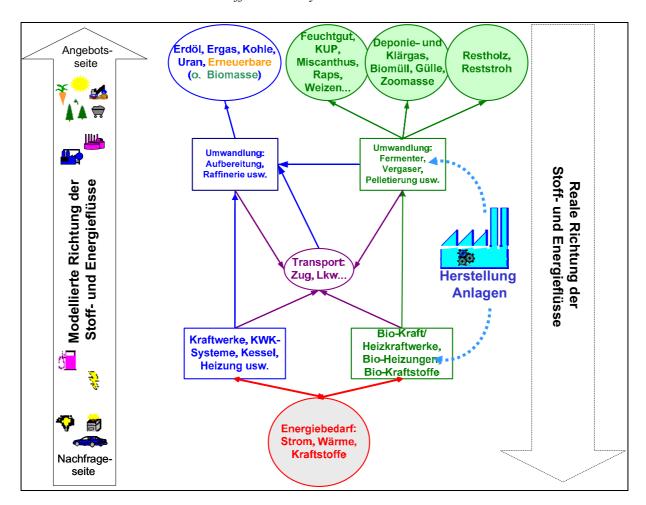
Im Folgenden werden die Fragen der Bereitstellung von aufbereitetem Biogas und Bio-SNG aus den vorgenannten Ländern mit Blick auf die sozialökonomischen Aspekte und die Umwelteffekte diskutiert. Im Mittelpunkt stehen dabei

- Wertschöpfung und Beschäftigung,
- Emissionen an Treibhausgasen (THG), ausgedrückt in CO₂-Äquivalenten und
- versauernde Luftschadstoffe (SO₂, NO_x, usw.), ausgedrückt in SO₂-Äquivalenten¹.

Ziel der sozioökonomischen Analyse ist zu klären, welche regionalen (Netto-)Effekte es im Hinblick auf die Bereitstellung von Biomethan gibt, wenn die Potenziale (vgl. IE 2007) ausgeschöpft würden. Ergänzend werden auch volkswirtschaftliche Aspekte der Biomethanbereitstellung mit einbezogen.

Die Umweltanalyse untersucht dagegen, welche Vor- und Nachteile es bei der Bereitstellung von Biomethan als *Importoption für Deutschland* gibt im *Vergleich zur nationalen Nutzung* in den potenziellen Exportländern.

Zuerst werden die methodischen Vorgehensweise und dann die Datengrundlagen dargestellt und nachfolgend die im Projekt durchgeführten Analysen erläutert.


Die Methodik und Datenbasis erlaubt auch die Bilanzierung weiterer Emissionen (CO, NMVOC, Staub) sowie die disaggregierte Darstellung der Einzelemissionen (CO₂, CH₄, N₂O, SO₂, NO_X usw.) sowie die Ermittlung von Reststoffmengen und Ressourceninanspruchnahmen (z.B. Metalle, Fläche).

1.1 Methodischer Ansatz

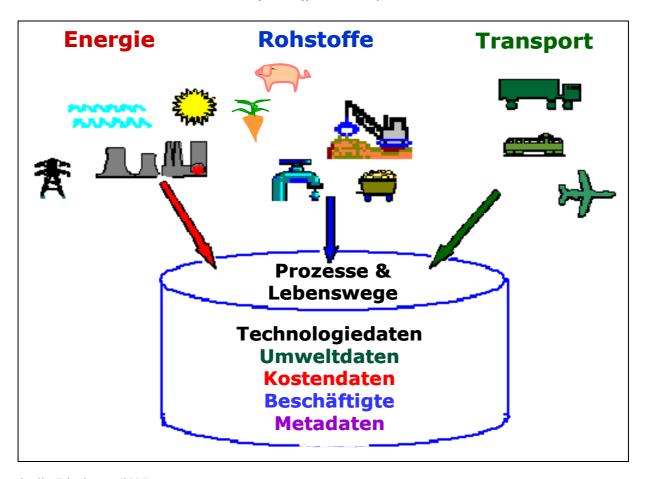
Die Umwelt- und Beschäftigungsfragen werden auf Basis des "Stoffstrom-Biomasse"-Vorhabens (vgl. Fritsche u.a. 2004) für ausgewählte Technologien zur Bereitstellung und Nutzung von Biomethan behandelt². Diese Untersuchung stellte die wichtigsten Kenndaten und methodischen Ansätze bereit, um die Bioenergienutzung in Deutschland zu analysieren und entsprechende Technologien zu vergleichen.

Dabei wurde die sog. *Stoffstromanalyse* als methodische Grundlage gewählt, bei der die Nachfrage nach Produkten und Dienstleistungen (z.B. Raumwärme, Strom) über alle vorgelagerten Prozessstufen bis zur Primärenergiebereitstellung bilanziert und dabei auch die Herstellung der notwendigen Anlagen sowie Hilfsenergie- und Hilfsstoffeinsätze sowie Transporte einbezogen werden (vgl. Bild 1).

Bild 1 Der Ansatz der Stoffstromanalyse im Bereich Biomasse

Quelle: Fritsche u.a. 2004

Biogas ist nach Aufbereitung auch als biogener Kraftstoff nutzbar, dies wird hier jedoch nicht weiter untersucht.


Die Stoffstromanalyse modelliert – entgegen der Richtung der realen Flüsse – von der Nachfrage bis zu den Ressourcen und kann mit diesem "bottom-up"-Ansatz eine vollständige Erklärung aller Effekte leisten. Zudem lässt sich damit relativ einfach auch die Konsequenz von geänderten – z.B. technologisch verbesserten – Prozessketten bestimmen.

Die datenseitige Erfassung und Bilanzierung erfolgt wie im "Stoffstrom"-Vorhaben auf Grundlage des Computermodells GEMIS³, das für Lebenswegbetrachtungen und Stoffstromanalysen einen breiten Datenhintergrund bietet und auch alle notwendigen Berechnungen integriert bereitstellt.

Dabei werden in GEMIS auch die Koppelprodukte, die z.B. bei der Bereitstellung von RME oder BtL entlang der Vorketten mit entstehen, durch Gutschriften in die Bilanz eingerechnet⁴.

Die prinzipielle Struktur der GEMIS-Datenbank zeigt die folgende Abbildung.

Bild 2 GEMIS als Datenbank für Stoffstromanalysen

Quelle: Fritsche u.a. (2004)

 $[\]underline{\underline{G}}$ lobales $\underline{\underline{E}}$ missions- $\underline{\underline{M}}$ odell $\underline{\underline{I}}$ ntegrierter $\underline{\underline{S}}$ ysteme – siehe $\underline{\underline{www.gemis.de}}$

⁴ GEMIS kann jedoch die Ergebnisse auch "brutto", d.h. ohne Verrechnung von Gutschriften für Nebenprodukte, ausgeben. Damit lässt sich die Sensitivität der Ergebnisse in Bezug auf die Koppelproduktverwendung analysieren.

GEMIS enthält eine detaillierte Beschreibung aller Einzelprozesse. Durch die Verknüpfung dieser Einzelprozesse über Input- und Hilfsenergie- bzw. Hilfsstoff- sowie Transportlinks werden ganze Prozessketten automatisch erzeugt. Die Bilanzierung von Umwelt, Kosten- und Beschäftigungseffekten kann dadurch bis auf die Ebene aller Einzelprozesse hin aufgelöst, aber auch regional oder sektoral aggregiert werden.

Neben Datenbank und Bilanzierung bietet GEMIS auch Hilfen zur Ergebnisanalyse, Im- und Exportroutinen sowie Schnittstellen zur Internet-Datenbank ProBas des Umweltbundesamts.

In Bezug auf die hier interessierende Biomasse als Energieträger bietet GEMIS zudem durch die *explizite Modellierung* von Brennstoffen über deren Elementaranalyse auch eine automatische Berechnung der Stoffströme für Kohlenstoff, Asche und Halogene.

Weiterhin kann GEMIS automatisch die mit den Transporten von Brennstoffen verbundenen Umwelteffekte bilanzieren, soweit Transportdistanz und Transportsystem gewählt werden.

1.2 Datengrundlagen zur Umwelt- und sozialökonomischen Analyse

1.2.1 Daten zu Bioenergieprozessen

Die Datengrundlage der vorliegenden Studie stützt sich im Bereich der Umweltfragen auf den im "Stoffstrom"-Projekt entwickelten Datenkern für Bioenergieprozesse für Deutschland, nutzt jedoch zusätzlich Daten zu Effizienz und Kosten der Biogas- und Bio-SNG-Herstellung und –aufbereitung aus IE (2007).

1.2.2 Daten zu Strom und Wärme

Die Stromerzeugungssysteme in Osteuropa wurden auf Basis von IEA-Daten unter Verwendung der GEMIS-Datenbasis abgebildet, um die nationalen Kraftwerksparks zu modellieren. Die Wärmeprozesse (Gasheizung) wurden entsprechend auf Basis von GEMIS Osteuropa abgebildet.

1.2.3 Daten zur Biomassebereitstellung

Weiterhin wurden Daten aus EEA (2006) zur Bereitstellung von biogenen Rohstoffen (Anbau) sowie für die Biogas- und Bio-SNG-Herstellung (Vergärung bzw. Vergasung und Aufbereitung) Daten nach IE (2007) und auf die Länder Weißrussland, Russland und Ukraine übertragen.

1.2.4 Daten zu Brennstoffeigenschaften

Die Brennstoffdaten wurden in der vorliegenden Studie komplett aus dem "Stoffstrom"-Projekt übernommen und durch eigene Abschätzungen für die Elementaranalysen der biogenen Brennstoffe in den Exportländern auf Basis von BIOBIB (2005) ergänzt. Die Kosten der biogenen Rohstoffe sowie der Bioenergieträger beruhen auf IE (2007).

2 Sozioökonomische Effekte der Bereitstellung von Strom und Wärme aus Biogas und Bio-SNG

Über die in IE (2007) diskutierten Kosten der Biomethanbereitstellung wird im Folgenden eine Berechnung der mit den Biomethanoptionen verbundenen *zusätzlichen Wertschöpfung* in der Land- und Forstwirtschaft sowie der Investitionsgüterindustrie (Anlagenherstellung) sowie der direkten und indirekten *zusätzlichen Beschäftigungseffekte* in der EU-15, der EU+10 (Beitrittsstaaten) sowie der EU+3 (Beitrittsanwärter) und ausgewählten GUS-Staaten durchgeführt, wobei die theoretischen Biomethan-Potenziale für 2010 bzw. 2020 nach IE (2007) als umgesetzt angenommen werden.

2.1 Zusätzliche Wertschöpfung durch die Biomethanbereitstellung

Ausgehend von den in IE (2007) genannten theoretischen Potenzialen für Biomethan in den o.g. Ländergruppen wurde zuerst die zusätzliche Wertschöpfung⁵ in der Landwirtschaft bestimmt, die sich aus dem Einsatz von Energiepflanzen zur Biogasherstellung ergibt⁶.

Tabelle 1 Zusätzliche Wertschöpfung in der Landwirtschaft durch die Bereitstellung von Substraten für die Biogaserzeugung

Biogas	Exkre	mente	Einstreu		Energiepflanzen		Summe	
Mio. €/a	2010	2020	2010	2020	2010	2020	2010	2020
EU-15	-	-	-	-	4.653	8.508	4.653	8.508
EU+10	-	-	-	-	1.233	1.579	1.233	1.579
EU+3	-	1	-	-	1.458	1.512	1.458	1.512
GUS	-	1	-	-	6.378	10.626	6.378	10.626
SUMME			•	-	13.722	22.225	13.722	22.225

Quelle: eigene Berechnungen nach IE (2007)

⁵ In die zusätzliche Wertschöpfung gehen nach IE (2007) *keine* Preissteigerungen bis 2020 ein.

Die zusätzliche Wertschöpfung durch die anteilige Nutzung von Exkrementen (Gülle) bzw. Einstreu ist Null, da diese von IE (2007) als kostenneutral angenommen wurde.

Danach wurde die entsprechende Bilanzierung für die Bereitstellung von Energieholz für die Forst- und Holzwirtschaft (Rest- bzw. Schwachholz) sowie die Landwirtschaft (KUP) durchgeführt. Dabei wurde von den in IE (2007) genannten Preisen für KUP ausgegangen und daraus die für Rest- und Schwachholz (75% von KUP) sowie für Industrierestholz (50% von KUP) angesetzt.

Tabelle 2 Zusätzliche Wertschöpfung durch die Bereitstellung von Holz für die Bio-SNG-Erzeugung

Holz	aus Forstwirtschaft		aus Holzwirtschaft		aus Landwirtschaft (KUP)		Summe	
Mio. €/a	2010	2020	2010	2020	2010	2020	2010	2020
EU-15	8.435	7.573	1.172	1.273	1.682	2.964	11.288	11.810
EU+10	2.071	1.970	151	169	520	849	2.741	2.988
EU+3	1.096	675	70	84	186	353	1.351	1.111
GUS	9.219	8.606	74	74	1.021	1.694	10.314	10.374
SUMME	20.820	18.824	1.466	1.600	3.408	5.859	25.694	26.284

Quelle: eigene Berechnungen nach IE (2007)

Im nächsten Schritt wurden die durch Investition und Betrieb der Biogas- bzw. Bio-SNG-Anlagen ausgelöste zusätzliche Wertschöpfung bestimmt. Dabei wurden die Investitionskosten in die Anlagen annuitätisch auf die Lebensdauer verteilt (für 8% Realzins) und die fixen Anlagekosten (Wartung, Instandhaltung, Versicherung, Lohn) einbezogen.

Dabei ist zu beachten, dass die durch die Investition vermittelte Wertschöpfung überwiegend in der Investitionsgüterindustrie realisiert wird und durch ggf. erfolgende Käufe im Ausland die regionale Abgrenzung gestört werden kann.

Daher sind die in der folgenden Tabelle genannten Zurechnungen zu den Ländergruppen wohl nur für die EU-15 belastbar, während für die anderen Länder eher von Technologieimporten auszugehen ist.

Die sektorale Aufteilung in den folgenden beiden Tabellen steht daher nicht für die sektorale Wertschöpfung, sondern für die auslösenden Nachfrage-Sektoren.

Tabelle 3 Zusätzliche Wertschöpfung durch Bau und Betrieb von Biogasanlagen

Biogas- Anlagen	für Exkremente		für Eins	für Einstreu		für Energiepflanzen		Summe	
Mio. €/a	2010	2020	2010	2020	2010	2020	2010	2020	
EU-15	4.937	4.984	381	381	21.796	39.855	27.113	45.219	
EU+10	824	840	62	62	7.189	9.206	8.075	10.108	
EU+3	746	832	54	62	5.236	5.430	6.037	6.324	
GUS	910	910	117	78	22.907	38.164	23.933	39.151	
SUMME	7.417	7.565	614	583	57.127	92.655	65.159	100.803	

Quelle: eigene Berechnungen nach IE (2007)

Tabelle 4 Zusätzliche Wertschöpfung durch Bau und Betrieb von Bio-SNG-Anlagen

Bio-SNG- Anlagen, Mio. €/a	aus Forstwirtschaft		aus Holzwirtschaft		aus Landwirtschaft (KUP)		Summe	
	2010	2020	2010	2020	2010	2020	2010	2020
EU-15	17.055	15.313	2.968	3.225	2.971	5.235	22.993	23.773
EU+10	4.716	4.486	440	494	1.018	1.663	6.173	6.642
EU+3	2.497	1.538	203	244	363	691	3.063	2.472
GUS	20.995	19.600	216	216	1.999	3.316	23.210	23.133
SUMME	45.262	40.937	3.827	4.179	6.351	10.905	55.440	56.020

Quelle: eigene Berechnungen nach IE (2007)

Die folgende Tabelle zeigt die Summe der zusätzlichen Wertschöpfung durch den Anlagenbau und –betrieb *inklusive* der zusätzlichen Wertschöpfung durch die Inputs (Substrate bzw. Holz).

Tabelle 5 Zusätzliche Wertschöpfung durch Bau und Betrieb von Biogas- und Bio-SNG-Anlagen sowie deren Inputs

alle Anlagen, Mio. €/a	für Res	Reststoffe für Anbau- Summe Biomasse		Biomasse		nme
	2010		2010	2020	2010	2020
EU-15	25.340	23.902	24.767	45.090	50.107	68.992
EU+10	6.042	5.882	8.206	10.869	14.248	16.751
EU+3	3.500	2.675	5.600	6.121	9.100	8.796
GUS	22.238	20.804	24.906	41.480	47.143	62.284
SUMME	57.120	53.263	63.478	103.560	120.598	156.823

Quelle: eigene Berechnungen nach IE (2007)

Die Realisierung der Potenziale im Jahr 2020 würde somit in der EU-15 *jährlich* knapp 70 Milliarden Euro an zusätzlicher Wertschöpfung bedeuten, wobei ²/₃ von den Anbaubiomassen und rund ¹/₃ von den biogenen Reststoffen ausgelöst würden.

In der EU+10 wären es im Jahr 2020 jährlich knapp 17 Milliarden Euro, in der EU+3 immer noch knapp 9 Milliarden Euro, während die GUS-Länder mit über 62 Milliarden Euro fast den Wert der EU-15 erreichen würden.

2.2 Netto-Bilanzierung der Wertschöpfung

Die o.g. zusätzliche Wertschöpfung erfolgt unabhängig davon, ob ggf. Erdgas ersetzt wird. Um jedoch den Substitutionsfall gegenüber russischem Erdgas zu illustrieren, wurde eine Nettobilanz der Wertschöpfung berechnet, bei der angenommen wurde, dass jeweils in der Länderregion Erdgas (zu Bezugspreisen ohne Steuern) durch das Biomethan ersetzt würde.

Für die EU-15 wurde dabei mit 2,5 €/GJ Erdgas gerechnet, für die EU+10 mit 2,2 €/GJ und für die EU+3 mit 1,8 €/GJ sowie für die GUS mit 1,4 €/GJ.

Das Ergebnis dieser Substitutionsbilanz zeigt die folgende Tabelle.

Tabelle 6 Nettobilanz der zusätzlichen Wertschöpfung bei Ersatz von Erdgas durch Biomethan

insgesamt, Mio €/a	2010	2020
EU-15	11.453	17.101
EU+10	4.336	5.237
EU+3	4.230	4.171
GUS	26.507	36.128
SUMME	46.526	62.637

Quelle: eigene Berechnungen nach IE (2007)

Die EU-15 könnte bis 2020 eine zusätzliche Netto-Wertschöpfung von jährlich 17 Mrd. € realisieren, die EU+10-Staaten etwas mehr als 5 Mrd. € und die EU+3 mehr als 4 Mrd. €, während die GUS noch über 36 Mrd. € an zusätzlicher jährlicher Netto-Wertschöpfung realisieren könnte.

2.3 Beschäftigungseffekte durch die Biomethan-Strategie

Durch die Umsetzung der Biomethanpotenziale würde nicht nur zusätzliche Wertschöpfung induziert, sondern auch Beschäftigungseffekte ausgelöst. Dabei würden sowohl

- *direkte* Beschäftigungseffekte über den Betrieb der Anlagen und die Bereitstellung der Inputs als auch
- *indirekte* Beschäftigungseffekte durch die Investition in die Anlagen und die Ausgaben für Wartung/Instandhaltung

entstehen.

Im Folgenden werden diese Effekte quantifiziert, wobei wiederum die Stoffstromanalyse für die direkten Effekte und ergänzend die *monetäre* Input-Output-Bilanzierung für die indirekten Effekte verwendet wird.

Die Bereitstellung der Inputs (Rohstoffe) für die Biomethan-Anlagen induziert die in der folgenden Tabelle gezeigten direkten und indirekten Beschäftigungseffekte (jeweils für volle Potenzialnutzung).

Tabelle 7 Direkte und indirekte Beschäftigungseffekte der Bereitstellung von Rohstoffen für die Biomethan-Anlagen

	Exkrer	nente	Einstreu		Energiepflanzen		Summe	
Biogas, Pers./a	2010	2020	2010	2020	2010	2020	2010	2020
EU-15	-	-	-	-	38.205	69.860	38.205	69.860
EU+10	-	-	-	-	19.415	24.865	19.415	24.865
EU+3	-	-	-	-	20.226	20.975	20.226	20.975
GUS	-	-	-	-	88.479	147.409	88.479	147.409
SUMME	-	-	1	•	166.325	263.109	166.325	263.109
	Forstwir	tschaft	Holzwirtschaft		Landwirtschaft (KUP)		Summe	
Holz, Pers./a	2010	2020	2010	2020	2010	2020	2010	2020
EU-15	6.347	5.699	-	-	5.662	9.978	12.010	15.677
EU+10	1.946	1.851	-	-	2.567	4.194	4.512	6.045
EU+3	1.031	635	-	-	1.045	1.986	2.076	2.621
GUS	-	-	-	-	5.749	9.538	5.749	9.538
SUMME	9.324	8.185	-	-	15.023	25.695	24.347	33.880

Die Beschäftigungswirkung bei Extrementen und Einstreu sowie Restholz aus der Holzwirtschaft sind Null, da diese Stoffe "ohnehin" anfallen.

Bei den o.g. Beschäftigungsdaten *überwiegend die direkten* Beschäftigungseffekte sehr stark (> 95%), da alle anderen Inputs (Investitionen, Hilfsstoffe) vergleichsweise kleine Beschäftigungseffekte bewirken.

Dies ist beim Bau und Betrieb der Anlagen zur Biomethan-Bereitstellung deutlich anders, wie die folgende Tabelle zeigt.

Tabelle 8 Direkte und indirekte sowie gesamte Beschäftigungswirkung für Bau und Betrieb der Biogas-Anlagen

Pers./a (gesamt)	für Exkremente		für Einstreu		für Energi	epflanzen	Sun	Summe		
,	2010	2020	2010	2020	2010	2020	2010	2020		
EU-15	118.023	119.138	9.107	9.107	409.827	749.398	536.957	877.644		
EU+10	19.701	20.073	1.487	1.487	142.371	182.331	163.559	203.891		
EU+3	17.843	19.887	1.301	1.487	90.329	93.675	109.473	115.049		
GUS	21.746	21.746	2.788	1.859	395.144	658.326	419.678	681.930		
SUMME	177.313	180.844	14.683	13.940	1.037.671	1.683.730	1.229.668	1.878.514		
Pers./a (direkt)	für Exkr	remente	für Eins	streu	für Energi	epflanzen	Sun	nme		
	2010	2020	2010	2020	2010	2020	2010	2020		
EU-15	50.881	51.362	3.926	3.926	176.683	323.077	231.490	378.365		
EU+10	8.494	8.654	641	641	61.378	78.606	70.513	87.901		
EU+3	7.692	8.574	561	641	38.942	40.385	47.196	49.599		
GUS	9.375	9.375	1.202	801	170.353	283.814	180.929	293.990		
SUMME	76.442	77.965	6.330	6.010	447.356	725.881	530.128	809.856		
Pers./a (indirekt)	für Exkr		für Eins		für Energi	-	Sun			
	2010	2020	2010	2020	2010	2020	2010	2020		
EU-15	67.141	67.776	5.181	5.181	233.145	426.321	305.467	499.278		
EU+10	11.208	11.419	846	846	80.993	103.726	93.046	115.991		
EU+3	10.151	11.314	740	846	51.387	53.290	62.278	65.450		
GUS	12.371	12.371	1.586	1.057	224.792	374.512	238.748	387.940		
SUMME	100.871	102.880	8.353	7.930	590.316	957.849	699.539	1.068.658		

Quelle: eigene Berechnungen mit GEMIS 4.4

Tabelle 9 Direkte und indirekte sowie gesamte Beschäftigungswirkung für Bau und Betrieb der Bio-SNG-Anlagen

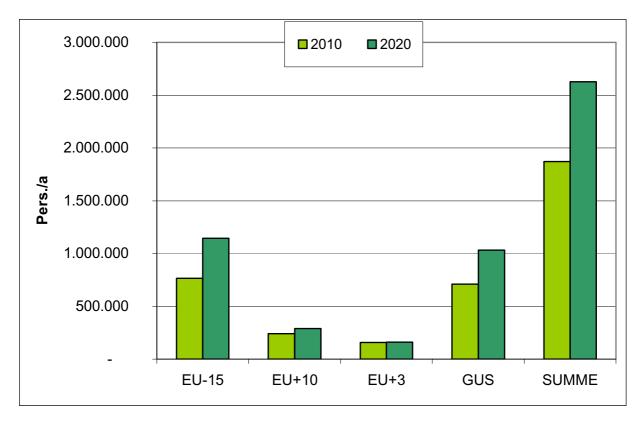
Pers /a (gesamt)	Pers./a (gesamt) aus		aı	ıe	aus Land	wirtschaft	Summe		
r ers./a (gesaint)	Forstwi			Holzwirtschaft		JP)	Juli	IIIC	
	2010	2020	2010	2020	2010	2020	2010	2020	
EU-15	130.939	117.568	27.282	29.645	19.583	34.507	177.805	181.721	
EU+10	40.180	38.222	4.389	4.930	7.563	12.358	52.133	55.509	
EU+3	21.272	13.101	2.026	2.431	2.701	5.132	25.999	20.664	
GUS	178.885	167.000	2.161	2.161	14.856	24.648	195.902	193.809	
SUMME	371.276	335.890	35.858	39.167	44.704	76.646	451.838	451.703	
Pers./a (direkt)	au Forstwii			aus Holzwirtschaft		wirtschaft JP)	Sum	me	
	2010	2020	2010	2020	2010	2020	2010	2020	
EU-15	13.707	12.307	2.856	3.103	2.050	3.612	18.613	19.023	
EU+10	4.206	4.001	459	516	792	1.294	5.457	5.811	
EU+3	2.227	1.371	212	254	283	537	2.722	2.163	
GUS	18.726	17.482	226	226	1.555	2.580	20.508	20.289	
SUMME	38.866	35.162	3.754	4.100	4.680	8.024	47.300	47.286	
Pers./a (indirekt)	au Forstwii		aı Holzwir		aus Landv (Kl		Sum	me	
	2010	2020	2010	2020	2010	2020	2010	2020	
EU-15	117.232	105.261	24.426	26.542	17.533	30.895	159.191	162.698	
EU+10	35.974	34.220	3.930	4.414	6.772	11.064	46.675	49.698	
EU+3	19.045	11.729	1.814	2.177	2.418	4.595	23.277	18.501	
GUS	160.159	149.518	1.935	1.935	13.301	22.068	175.395	173.520	
SUMME	332.409	300.728	32.104	35.067	40.025	68.622	404.538	404.417	

Werden nun die direkten und indirekten Beschäftigungseffekte der Bereitstellung der Rohstoffe sowie die der Biomethan-Anlagen addiert, so ergeben sich die Gesamteffekte (vgl. folgende Tabelle).

Tabelle 10 Gesamte Beschäftigungseffekte der Biomethanbereitstellung

Biogas, Pers./a	für Exkremente für Einstreu für Energiepflan		epflanzen	n Summe				
	2010	2020	2010	2020	2010	2020	2010	2020
EU-15	118.023	119.138	9.107	9.107	448.032	819.258	575.162	947.504
EU+10	19.701	20.073	1.487	1.487	161.786	207.196	182.974	228.756
EU+3	17.843	19.887	1.301	1.487	110.555	114.650	129.699	136.024
GUS	21.746	21.746	2.788	1.859	483.623	805.735	508.157	829.339
SUMME	177.313	180.844	14.683	13.940	1.203.996	1.946.839	1.395.992	2.141.623
Bio-SNG, Pers./a	aus Forstw	virtschaft	aus Holzv	virtschaft	aus Land		Sun	nme
	aus Forstw	virtschaft 2020	aus Holzv	virtschaft 2020			Sun 2010	nme 2020
					(Kl	JP)		
Pers./a	2010	2020	2010	2020	2010	JP) 2020	2010	2020
Pers./a EU-15	2010 137.286	2020 123.267	2010 27.282	2020 29.645	2010 25.246	JP) 2020 44.485	2010 189.814	2020 197.398
Pers./a EU-15 EU+10	2010 137.286 42.126	2020 123.267 40.072	2010 27.282 4.389	2020 29.645 4.930	2010 25.246 10.130	2020 44.485 16.552	2010 189.814 56.645	2020 197.398 61.554

Die Summe der Beschäftigungseffekte für die Biomethanbereitstellung nach Reststoffen und Energiepflanzenanbau zeigt die folgende Tabelle.


Tabelle 11 Summe der Beschäftigungseffekte für die Biomethanbereitstellung

insgesamt,	Reststoffe		Ant	oau	Summe	
Pers./a	2010	2020	2010	2020	2010	2020
EU-15	291.698	281.158	473.278	863.744	764.976	1.144.902
EU+10	67.703	66.562	171.916	223.748	239.619	290.310
EU+3	43.472	37.541	114.302	121.768	157.774	159.309
GUS	205.580	192.765	504.228	839.920	709.808	1.032.686
SUMME	608.454	578.026	1.263.724	2.049.180	1.872.177	2.627.206

Quelle: eigene Berechnungen mit GEMIS 4.4

Die Verteilung der Beschäftigungseffekte über die Zeit und Ländergruppen zeigt die folgende Grafik im Überblick.

Bild 3 Gesamte Beschäftigungseffekte der Biomethan-Strategie

Sowohl in der EU-15 als auch den GUS-Staaten könnte die – hypothetische - vollständige Potenzialumsetzung bis 2010 jeweils fast eine *Dreiviertel Million zusätzlicher* Beschäftigte bewirken und bis 2020 sogar jeweils deutlich *über eine Million Jobs*.

Dieses Ergebnis ist auch weitestgehend *unabhängig* davon, ob eine *Nettobilanz* unter Einrechnung substituierter Beschäftigung in der Erdgasindustrie (Gasbereitstellung) angenommen wird, da die spezifischen Beschäftigungswirkungen der Erdgasbereitstellung um mehr als den Faktor 10 *unter* denen der Biomethanbereitstellung liegt.

2.4 Weitere volkswirtschaftliche Aspekte von Biomethan

Aufgrund der großen Beschäftigungseffekte sollten in der volkswirtschaftlichen Beurteilung nicht allein die Bereitstellungskosten (vgl. IE 2007) berücksichtigt werden, sondern auch die indirekten Wirkungen der zusätzlichen Wertschöpfung und Beschäftigung auf die Staatshaushalte – dazu im Folgenden einige Beispiele.

2.4.1 Effekte durch die Mehrwertsteuer

Je Euro Wertschöpfung kann in der EU-15 von derzeit durchschnittlich 20% Mehrwertsteuer ausgegangen werden, was sich bis 2020 auf 25% erhöhen dürfte.

Aus dem zusätzlichen Mehrwert der Biomethanstrategie ergäben sich daraus staatliche Mehreinnahmen allein für die EU-15 von über 2 Mrd. €/a in 2010 bzw. über 4 Mrd. €/a in 2020. Für das Gesamtpotenzial ergäbe sich – bei regional differenzierter MWSt. – gesamte Mehreinnahmen der Staaten von fast 7 Mrd. € in 2010 bzw. fast 12 Mrd. € in 2020.

Allein dieser Effekt würde, umgerechnet auf die Biomethanpotenziale, je nach Ländergruppe in 2010 zwischen 0,4 bis 0,7 €/GJ Biomethan bzw. 0,6 bis 0,9 €/GJ Biomethan bis 2020 liegen (0,1-0,2 €cent/kWh in 2010 bzw. 0,2 -0,3 €cent/kWh in 2020).

2.4.2 Effekte durch die Lohnsteuer und Sozialabgaben

Je Beschäftigtem in der EU-15 kann weiterhin von einer *zusätzlichen* staatlichen Einnahme an Lohnsteuer und Sozialabgaben von *mindestens* 20.000 €/a ausgegangen werden (je 20% Lohnsteuer + Sozialabgaben), womit sich allein daraus staatliche Mehreinnahmen in der EU-15 von über 15 Mrd. € in 2010 bzw. 23 Mrd. € in 2020 ergäben. Bezogen auf das Biomethanpotenzial der EU-15 sind dies in 2010 fast 3 €/GJ (bzw. 1 €cent/kWh) und in 2020 über 3 €/GJ (bzw. über 1 €cent/kWh) an *zusätzlichem Nutzen*.

2.4.3 Effekte durch vermiedene Treibhausgase

Wird schließlich der monetäre "Wert" der Treibhausgaseinsparung gegenüber Erdgas (vgl. nächstes Kapitel) hinzugerechnet, der mit 20 €/t CO_2 (2010) bzw. 30 €/t CO_2 (2020) angenommen werden kann, so ergäben sich für 2010 weitere 1,4 €/GJ (bzw. 0,5 €cent/kWh) sowie in 2020 etwa 2,1 €/GJ (bzw. 0,8 €cent/kWh) aus dem "Wert" der vermiedenen THG-Emissionen bei der Substitution von Erdgas.

2.4.4 Gesamte volkswirtschaftliche Zusatzeffekte

Werden diese gesamten volkswirtschaftlichen Zusatzeffekte saldiert, so ergeben sich allein für die EU-15 jährliche Mehreinnahmen von über 25 Mrd. € in 2010 bzw. fast 43 Mrd. € in 2020, dies sind spezifisch fast 5 €/GJ Biomethan (1,7 €cent/kWh) in 2010 bzw. fast 6 €/GJ in 2020 (2,1 €cent/kWh).

Wird dies von den Gestehungskosten von Biomethan nach IE (2007) abgezogen, so verbleiben für die günstigen Fälle etwa 5 €cent/kWh Biomethan als volkswirtschaftlichem "Nettopreis".

Gegenüber dem *heutigen* Erdgaspreis (ohne Steuern) in der EU-15 von ca. 2,5 €cent/kWh ist dies immer noch fast eine Verdopplung.

Jedoch kann u.E. bei weiter steigenden Preisen für Erdgas und fortschreitenden Lerneffekten für die Biomethanbereitstellung von einer *langfristigen volkswirtschaftlichen Angleichung* ausgegangen werden.

Die folgende Tabelle zeigt eine Übersicht zu den hier als Beispiele bestimmten indirekten monetären Wirkungen für die Staatshaushalte.

Tabelle 12 Monetäre Zusatzeffekte der Biomethanstrategie auf die Staathaushalte

	MWSt (nur netto), Mio. €		spezifis	spezifisch €/GJ		spezifisch €cent/kWh	
	2010	2020	2010	2020	2010	2020	
EU-15	2.291	4.275	0,4	0,6	0,1	0,2	
EU+10	759	1.309	0,5	0,7	0,2	0,2	
EU+3	635	834	0,7	0,9	0,2	0,3	
GUS	3.313	5.419	0,6	0,8	0,2	0,3	
Summe	6.997	11.838					
	Lohnst.+So	-	spezifis		spezifisch •		
	2010	2020	2010	2020	2010	2020	
EU-15	15.300	22.898	2,8	3,1	1,0	1,1	
EU+10	3.211	5.806	1,9	3,0	0,7	1,1	
EU+3	1.578	2.135	1,6	2,3	0,6	0,8	
GUS	5.678	10.327	1,1	1,6	0,4	0,6	
Summe	25.767	41.166					
	CO2-Wer	•	spezifisch €/GJ		spezifisch €cent/kWh		
	2010	2020	2010	2020	2010	2020	
EU-15	7.731	15.567	1,4	2,1	0,5	0,8	
EU+10	2.313	4.030	1,4	2,1	0,5	0,8	
EU+3	1.364	1.943	1,4	2,1	0,5	0,8	
GUS	7.223	13.732	1,4	2,1	0,5	0,8	
Summe	18.630	35.272					
	Staat gesa	mt Mia £	spezifis	ob <i>61</i> C I	spezifisch (Foont/k\N/h	
	2010	2020	2010	2020	2010	2020	
E11.45	<u> </u>						
EU-15	25.321	42.741	4,6	5,8	1,7	2,1	
EU+10 EU+3	6.282	11.145	3,8	5,8	1,4	2,1	
GUS	3.576 16.214	4.911 29.478	3,7	5,3 4,5	1,3	1,9	
			3,1	4,5	1,1	1,6	
Summe	51.394	88.275					

Quelle: eigene Berechnungen; Angaben bezogen auf den unteren Heizwert (Hu)

Es ist festzuhalten, dass die obigen Beispiele *als solche* zu verstehen sind – es war nicht Aufgabe dieser Kurzstudie, eine detaillierte Bilanzierung der volkswirtschaftlichen Gesamteffekte oder der langfristigen Gleichgewichtspreise durchzuführen.

Die indikative Darstellung der Zusatzeffekte erfolgte, um eine Größenordnung der zusätzlichen Effekte abzuschätzen und nur in diesem Sinne sind die genannten Werte zu verstehen.

2.5 Zusammenfassung zur sozioökonomischen Analyse

Die Umsetzung der Biomethan-Potenziale in Europa hätte erhebliche positive Effekte auf die Volkswirtschaften:

- Die *zusätzliche Netto-Wertschöpfung* läge im Jahr 2010 in der EU-15 bei 11,5 Milliarden €, in den anderen EU-Staaten (EU+10 sowie EU+3) bei 8,5 Mrd. € und in den betrachteten GUS-Staaten bei 26,5 Mrd. €. Diese Werte würden bis 2020 auf über 17 Mrd. € für die EU-15, über 9 Mrd. für die anderen EU-Staaten und über 36 Mrd. € für die GUS-Staaten ansteigen. Die Netto-Summen lägen bei rund 47 Mrd. € (2010) bzw. 63 Mrd. € (2020).
- Die zusätzliche *Brutto*-Wertschöpfung (ohne Verrechnung von substituiertem Erdgas) läge deutlich höher allein über 50 Mrd. € in der EU-15 und 47 Mrd. € in der GUS (2010) bzw. 69 Mrd. € in der EU-15 und 62 Mrd. € in der GUS (2020). Die Brutto-Summen lägen bei über 120 Mrd. € (2010) bzw. knapp 157 Mrd. € (2020).
- Die zusätzlichen direkten und indirekten Beschäftigungseffekte durch die Biomethanbereitstellung könnten bis 2010 insgesamt fast 2 Millionen neue Jobs schaffen, davon rund eine ¾ Million allein in der EU-15 und ca. 710.000 in den GUS-Staaten. Bis 2020 würden diese Werte auf insgesamt gut 2,7 Millionen Beschäftigte ansteigen, davon gut 1,1 Millionen in der EU-15 und 1 Million in den GUS-Staaten.
- Diese Beschäftigungseffekte beruhen zu rund 40% auf *direkten* Beschäftigungseffekten, die vorwiegend im strukturschwachen ländlichen Raum entstünden. Die anderen 60% sind hochqualifizierte Jobs vor allem in der Investitionsgüterindustrie (Anlagenbau) und dem Handwerk (Wartung).
- Eine Abschätzung der staatlichen Mehreinnahmen durch die Biomethanstrategie ergab, dass sich alleine durch die zusätzliche Mehrwertsteuer gut 7 Mrd. € (2010) bzw. 12 Mrd. € (2020) ergäben. Die zusätzlichen Einnahmen aus Lohnsteuer und Sozialabgaben würden weitere 26 Mrd. € (2010) bzw. 41 Mrd. € (2020) erbringe, wobei allein in der EU-15 über 15 Mrd. € (2010) bzw. 23 Mrd. € (2020) zu bilanzieren wären.
- Wird der monetäre Effekt der vermiedenen CO₂-Emissionen (Handelswert) noch einbezogen, so ergäben sich insgesamt staatliche Mehreinnahmen von über 51 Mrd. € bis 2010 und über 88 Mrd. € bis 2020. Davon entfielen auf die EU-15 über 25 Mrd. € (2010) bzw. 43 Mrd. € (2020).

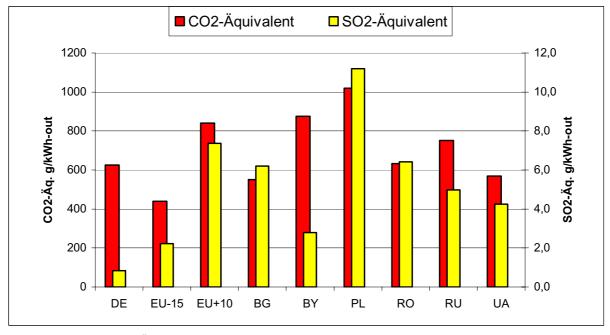
Diese volkswirtschaftlichen "Nebeneffekte" könnten die Gestehungskosten von Biomethan um ca. 3-6 €/GJ (1-2 €cent/kWh) senken bzw. stünden für *kostenneutrale* Markteinführungsprogramme (Förderung, Einspeisetarife usw.) zur Verfügung.

3 Umwelteffekte der Bereitstellung von Strom und Wärme

In *Ergänzung* der Aufgabenstellung der Kurzstudie wird im folgenden Kapitel eine kurze Analyse der Umwelteffekte einer Biomethanstrategie durchgeführt.

3.1 Umwelteffekte der konventionellen Strom- und Wärmebereitstellung

Die Umwelteffekte der Stromerzeugung sind in Belarus, Russland und der Ukraine gegenüber dem Mix der bundesdeutschen Stromerzeugung sehr unterschiedlich, wie die folgende Tabelle zeigt.


Tabelle 13 Bilanzen zu Treibhausgasen und Luftschadstoffen für die heutige Bereitstellung von Strom in europäischen Ländern

	[g/kWh _{out}]		
	CO ₂ -Äquivalent	SO₂-Äquivalent	
DE	626	0,8	
EU-15	439	2,2	
EU+10	840	7,4	
BG	551	6,2	
BY	875	2,8	
PL	1020	11,2	
RO	633	6,4	
RU	752	5,0	
UA	569	4,2	

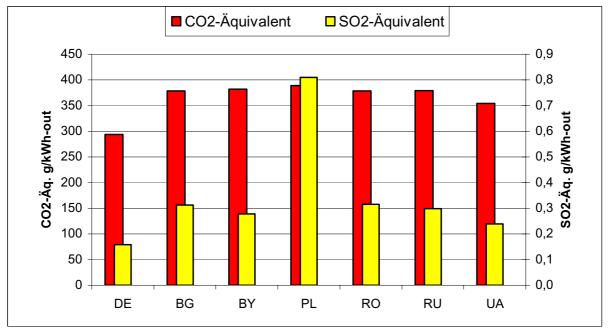
Quelle: GEMIS 4.4

Die Verhältnisse der THG- und Luftschadstoff-Emissionen bei der Stromerzeugung zeigt die folgende Abbildung nochmals im Überblick.

Bild 4 Bilanzen zu Treibhausgasen und Luftschadstoffen für die heutige Bereitstellung von Strom in europäischen Ländern

Quelle: Berechnung des Öko-Instituts mit GEMIS 4.4

Da Biomethan jedoch vorrangig in der *gekoppelten* Strom- *und* Wärmebereitstellung (KWK) eingesetzt werden sollte, muss auch die Wärmebereitstellung mit berücksichtigt werden.


Tabelle 14 Bilanzen zu Treibhausgasen und Luftschadstoffen für die heutige Bereitstellung von Wärme aus Gasheizungen in europäischen Ländern

	[g/kWh _{out}]		
	CO₂-Äquivalent	SO₂-Äquivalent	
DE	294	0,2	
BG	378	0,3	
BY	382	0,3	
PL	389	0,8	
RO	379	0,3	
RU	379	0,3	
UA	354	0,2	

Quelle: Berechnung des Öko-Instituts mit GEMIS 4.4

Diese Bilanz zeigt, dass die Gasheizungen sowohl im Hinblick auf die THG- wie auch die Luftschadstoffemissionen günstiger liegt als in den Vergleichsländern.

Bild 5 Bilanzen zu Treibhausgasen und Luftschadstoffen für die heutige Bereitstellung von Wärme aus Gasheizungen in europäischen Ländern

Quelle: Berechnung des Öko-Instituts mit GEMIS 4.4

Der hohe Wert für SO₂-Äquivalente in Polen ergibt sich aus den noch unentschwefelten Braunkohlekraftwerken mit hohen SO₂-Emissionen, die indirekt über den Hilfsstrom für die Gasheizung "durchschlagen". Im Zuge des Baus von Rauchgasentschwefelungsanlagen und der Stilllegung von Altkraftwerken wird sich dies bis 2020 jedoch deutlich reduzieren.

3.2 Umwelteffekte der Bereitstellung von Biomethan

Ergänzend wurden Umweltbilanzen für die Bereitstellung von Biomethan in den Beispielländern frei Verbraucher (Herstellung, Aufbereitung, Transport usw.) mit GEMIS bestimmt.

Die folgende Tabelle zeigt diese Umweltbilanzen für die Bereitstellung von Biomethan in den Ländern sowie für den Export nach Deutschland (DE) im Vergleich zur Bereitstellung in DE.

Tabelle 15 Umweltbilanz der Bereitstellung von Biomethan

	Biogas [g/	kWh _{out}]	Bio-SNG [g/kWh _{out}]		
	CO ₂ -Äquivalent	SO₂-Äquivalent	CO ₂ -Äquivalent	SO₂-Äquivalent	
DE	205	1,0	29	0,1	
BG	160	1,2	35	0,2	
BY	199	1,0	32	0,2	
PL	205	1,4	32	0,2	
RO	165	1,2	35	0,2	
RU	191	1,2	32	0,2	
UA	179	1,1	32	0,2	
aus-BG	163	1,2	38	0,2	
aus-BY	201	1,0	34	0,2	
aus-PL	210	1,4	37	0,2	
aus-RO	190	1,2	59	0,3	
aus-RU	246	1,3	86	0,3	
aus-UA	203	1,2	55	0,2	

Quelle: Berechnung des Öko-Instituts mit GEMIS 4.4; Kostendaten vorläufig!

Die Bio-SNG-Herstellung ist günstiger als die Biogasbereitstellung, was überwiegend an der höheren Effizienz der Vergasung und geringeren Aufwänden für Holz im Kurzumtrieb liegt.

Diese Gegenüberstellung zeigt weiter, dass der Effekt des Transports von Biomethan beim "Import"-Fall gegenüber der inländischen Bereitstellung kaum eine Rolle spielt. Beim Transport des Gases aus den Exportländern erhöhen sich zwar die Emissionen – in Abhängigkeit von der Entfernung – gegenüber der inländischen Bereitstellung, jedoch sind dies absolut gesehen geringe Beträge.

Vergleicht man diese Bereitstellungsemissionen jedoch mit denen z.B. einer Gasheizung (vgl. Tabelle 14), zeigt sich deutlich, dass trotz dieser Aufwände eine relativ große Einsparung durch importiertes Biomethan möglich wäre.

3.3 Umwelteffekte bei der Nutzung von Biomethan für Strom und Wärme

Zur effizienten Nutzung sollte Biomethan vorrangig in KWK-Anlagen eingesetzt werden. Daher wurde ergänzend ein Vergleich der Effekte des Einsatzes von Biomethan aus den Beispielländern in KWK-Anlagen in diesen Ländern gegenüber dem Export des Biogases nach DE und dem hiesigen Einsatz in KWK-Anlagen bilanziert.

Im *Referenzfall (REF)* wird jeweils die Strom- bzw. Wärmenachfrage durch das *nationale* Kraftwerksmix bzw. eine Gasheizung gedeckt.

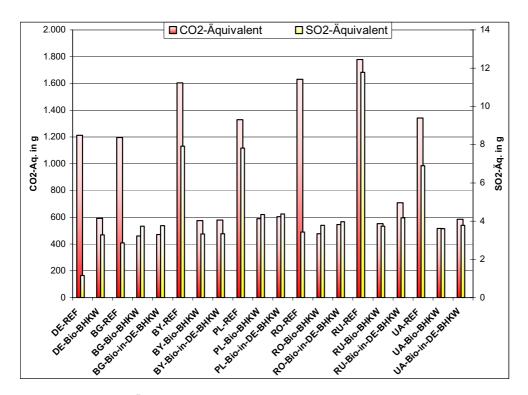
Um diesen Referenzfall mit der Biomethannutzung in KWK zu vergleichen, wurde als Basis für jedes Land die Bereitstellung von 1 kWh Strom + 2 kWh Wärme angesetzt, da dieses Verhältnis typisch für die dezentrale KWK mit Biogas (Gasmotoren) ist⁷.

Die folgende Tabelle zeigt das Ergebnis.

Tabelle 16 Umweltbilanz der Bereitstellung von Strom und Wärme aus Kraftwerksmix + Gasheizung versus KWK mit Biomethan

	Bio = I	Biogas	Bio = Bio-SNG		
	CO ₂ -Äquivalent	SO ₂ -Äquivalent	CO ₂ -Äquivalent	SO₂-Äquivalent	
DE-REF	1.213	1,2	1.213	1,2	
DE-Bio-BHKW	591	3,3	89	0,8	
BG-REF	1.196	2,9	1.196	2,9	
BG-Bio-BHKW	461	3,7	106	1,0	
BG-Bio-in-DE-BHKW	471	3,8	115	1,0	
BY-REF	1.603	7,9	1.603	7,9	
BY-Bio-BHKW	574	3,3	97	0,9	
BY-Bio-in-DE-BHKW	579	3,3	102	0,9	
PL-REF	1.329	7,8	1.329	7,8	
PL-Bio-BHKW	590	4,3	97	0,9	
PL-Bio-in-DE-BHKW	605	4,4	174	1,1	
RO-REF	1.632	3,4	1.632	3,4	
RO-Bio-BHKW	476	3,8	105	1,0	
RO-Bio-in-DE-BHKW	547	4,0	174	1,1	
RU-REF	1.778	11,8	1.778	11,8	
RU-Bio-BHKW	551	3,7	97	0,9	
RU-Bio-in-DE-BHKW	708	4,2	250	1,3	
UA-REF	1.342	6,9	1.342	6,9	
UA-Bio-BHKW	517	3,6	97	0,9	
UA-Bio-in-DE-BHKW	584	3,8	162	1,1	

Quelle: Berechnung des Öko-Instituts mit GEMIS 4.4; Daten in g Emission je 1 kWh_{el} + 2 kWh_{th}


Im Referenzfall werden je nach Land zwischen 1,2 und 1,8 kg THG und zwischen 3 und 12 g an Säurebildnern emittiert, in DE sind es etwa über 1 g. Im Falle der Nutzung des Biomethans in einem BHKW in den osteuropäischen Ländern können die THG-Emissionen jeweils mehr als halbiert (Biogas) bzw. um gut 90% reduziert (Bio-SNG) und die SO₂-Äquivalent-Emissionen um bis zu 90% gesenkt (Bio-SNG in RU) werden.

Würde dagegen das Biomethan nach DE exportiert und dort in einem – baugleichen! – deutschen BHKW eingesetzt, so lägen die Emissionen zwar deutlich unter der Referenz, aber in jedem Fall leicht höher als bei der inländischen Nutzung des Biomethans.

Die folgenden Abbildungen zeigen die Verhältnisse für Biogas und Bio-SNG nochmals getrennt im Überblick.

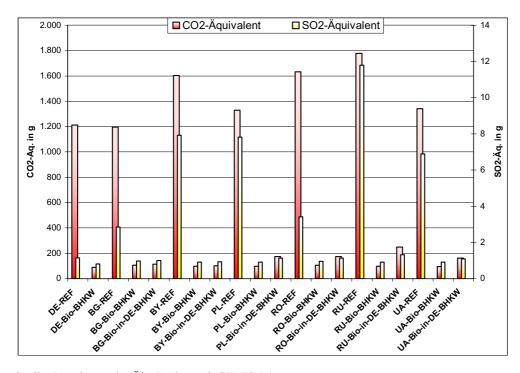

Hier wird jeweils ein Gasmotor-BHKW mit 500 kWel für Biogas und Bio-SNG angenommen gegenüber einer 10-kW-Gasheizung und Strom aus dem nationalen Kraftwerkspark.

Bild 6 Vergleich der Nutzung von Biogas zur Strom- und Wärmebereitstellung in KWK in osteuropäischen Ländern und DE sowie beim Import nach DE

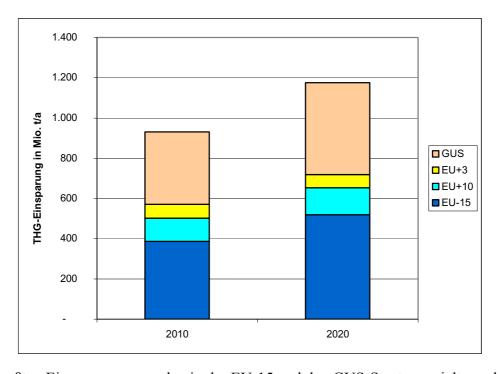
Quelle: Berechnung des Öko-Instituts mit GEMIS 4.4

Bild 7 Vergleich der Nutzung von Bio-SNG zur Strom- und Wärmebereitstellung in KWK in osteuropäischen Ländern und DE sowie beim Import nach DE

Quelle: Berechnung des Öko-Instituts mit GEMIS 4.4

3.4 Zusammenfassung zur Umweltanalyse

Diese Analyse zeigt, dass die Nutzung von Biomethan zu erheblichen Einsparungen von Treibhausgasen und z.T. Luftschadstoffen führen könnte. Würden die gesamten Potenziale von Biomethan realisiert, so läge die Einsparung gegenüber Erdgas bis 2010 bei insgesamt fast 1 Mrd. Tonnen und würde bis 2020 auf gut 1,2 Mrd. t ansteigen (siehe Tabelle).


Tabelle 17 Nettobilanz für Treibhausgase bei der Substitution von Erdgas durch Biomethan

	THG-Vermeidung in Mio. t CO₂-Äquivalente			
	2010	2020		
EU-15	387	519		
EU+10	116	134		
EU+3	68	65		
GUS	361	458		
Summe	931	1.176		

Quelle: eigene Berechnungen mit GEMIS 4.4

Die Anteile der Klimagaseinsparung zeigt die folgende Grafik nochmals in der Übersicht.

Bild 8 Klimagaseinsparung bei der Substitution von Erdgas durch Biomethan

Die größten Einsparungen würden in der EU-15 und den GUS-Staaten erzielt werden.

Gegenüber den heutigen THG-Emissionen der EU-15 von rd. 4,2 Mrd. t CO₂-Äquivalenten könnten alleine durch die Biomethanstrategie gut 10% der Emissionen vermieden und *allein damit* das EU-Kyoto-Ziel erreicht werden. Die EU+10-Emissionen von heute etwa 750 Mio. t CO₂-Äquivalente könnten allein durch die Biomethanstrategie bis 2010 sogar um 15% gesenkt werden.

Dies soll verdeutlichen, welches beachtliche Potenzial zum Klimaschutz in den Biomethanpotenzialen liegt.

Die "heimische" Nutzung des Biomethans schneidet aus Sicht des Klimaschutzes und der Luftschadstoffreduktion günstiger ab als ein Export (z.B. nach Deutschland), wenngleich auch dies gegenüber dem Referenzfall *ohne* Biomethan bei den THG deutliche Minderungen erlaubt.

Die Beispiele zeigen, dass die Umweltbilanzen eines möglichen Biomethanhandels mit Ländern Osteuropas und der GUS gegenüber der "heimischen" Nutzung biogener Ressourcen in den Erzeugerländern leicht ungünstiger sind, also der Biogasexport nach Deutschland keinen klaren THG-Vorteil bietet und zu (leicht) höheren Luftschadstoffemissionen führen würde als die Nutzung im Exportland.

Dennoch zeigt der Vergleich auch, dass die *absoluten* Unterschiede zwischen der heimischen Nutzung von Biogas und Bio-SNG und der "Export"-Option gering sind und die Einsparungen gegenüber den Referenz-Fällen sowohl in DE als auch in den osteuropäischen Ländern deutlich überwiegen.

Insgesamt gilt, dass die "heimische" Biomethannutzung zwar leichte Umweltvorteile gegenüber Importvarianten (aus Osteuropa) aufweist, aber die Potenzialrestriktionen in der EU-15 die heimische Nutzung begrenzen.

Zur weiteren Reduktion von THG-Emissionen in der EU-15 ist ein Import von Biomethan aus nachhaltig angebauter Biomasse sinnvoll und würde durch den zusätzlichen Erdgas-Ersatz nicht nur die Umwelt entlasten, sondern auch die Versorgungssicherheit erhöhen sowie in den Exportländern für erhebliche Investitionen und Beschäftigungseffekte sorgen (siehe Kapitel 2).

Daher ist der Export von Biomethan *dann* aus Umweltsicht günstig, wenn er zur Realisierung der Potenziale (z.B. über Auslandsinvestitionen) dient.

Soweit die potenziellen Exportländer dem Europäischen Emissionshandelssystem für CO₂ angehören, ließe sich auch die "lokale" THG-Reduktion überregional vermarkten. Entsprechend könnten auch *joint-implementation*-Projekte zwischen den EU-Ländern und den GUS-Staaten die flexiblen Instrumente des Kyoto-Protokolls nutzen, um die THG-Reduktion durch Biomethan-Nutzung in GUS-Staaten für EU-Staaten *ohne physischen* Gastransport anzurechnen.

Literatur

- Fritsche, Uwe R. u.a. 2004: Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse: Verbundprojekt unter Leitung des Öko-Instituts, wissenschaftliche Partner FhI-UMSICHT, IE Leipzig, IFEU Heidelberg, IZES Saarbrücken, TU Braunschweig und TU München, gefördert vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit; Projektergebnisse (Broschüre, Endbericht, Datenbasis, Infoblätter usw.) siehe www.oeko.de/service/bio
- EEA (European Environment Agency) 2006: Environmentally compatible bioenergy potentials in the EU-25; study commissioned by the European Environment Agency (EEA), prepared by Öko-Institut/AEAT/Alterra/EFI, Darmstadt usw.
- IE (Institut für Energetik und Umwelt) 2007: Möglichkeiten einer europäischen Biogaseinspeisungsstrategie Teil I; D. Thrän u.a., Kurzstudie i.A. der Bundestagsfraktion Bündnis90/Die GRÜNEN, Leipzig
- ÖKO (Öko-Institut Institut für angewandte Ökologie e.V.) 2006: GEMIS Version 4.4, Internet-release auf www.gemis.de im Dezember 2006
- VIEWLS (CLEAR VIEWS on CLEAN FUELS) 2005: Biomass production potentials in Central and Eastern Europe under different scenarios; Final report of WP3 of the VIEWLS project, Jinke van Dam et al., Utrecht