Conclusions of the Four Breakout Sessions

The conference closed with the following conclusions of the four breakout sessions:

Session 1: Biomass Feedstock and Production

Challenges

- Supply diverse markets & consumer needs
- Expand feedstock supplies incl. sustainable, trade
- Meet the quality requirements of the processes
- Maximize yield per unit area by minimizing
- negative environmental impacts
 - Whole crop use

Strengths	Weaknesses
 Highly competent RTD background 	 Complex matrix of feedstocks with differentcharacteristics & requirements
 Good partnerships (EU- USA) 	Seasonality (harvest window)
 Critical mass is there 	•
 Demand is getting stronger 	•
 Research - Industry already working 	•
closely	

Opportunities	Threats
 Favorable political floor Biofuels Directive Biomass Action Plan Biofuels Strategy Biofuels Vision 2030 Energy Crops Scheme etc. 	 Time: genetics & agronomy needs to speed up
 High oil prices 	 Myths: biotechnology & GM products
 Industrial interest 	 Sustainability environmental impacts
	 Links: crop logistics to target multi- functionality

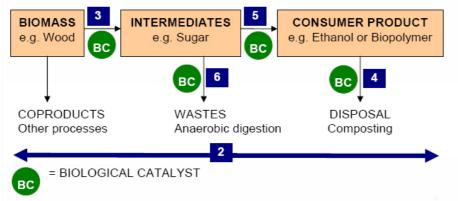
Conclusions

- Multi-crop systems
 - Agri & Forestry residues, wastes
 - Annuals & perennials
 - Herbaceous, grasses & trees
- New member states increase feedstock base
- From traditional to multifunctional agriculture
- Mixed cropping solutions
 - Soil-climate
 - Agricultural systems
 - Socio-economic conditions
- Land use strategies (tradition, markets and subsidy frames)
- Work close with the farming/ forestry community
- Synergies with all platforms (cross-cutting issue)

Research topics

Field & Lab

- Genetics: efficiency of lignocellulosic biomass conversion to biofuel through plant biology & enzymes
- Agronomy: species, yields, water use efficiency etc.
- Sustainability (biodiversity, soil erosion etc.)
- Logistics
 - Harvest
 - Pre-processing based on product requirements
 - Storage for wet & dry conditions Bulk storage
- Acceptability
 - Demonstration fields for farmers in selected regions in order to improve perception and speed up learning process


Session 2: Advances in biochemical conversion

Five points to be addressed

- a) Challenges and technical bottlenecks what was presented and discussed
- b) R&D within EU and Member States www.biomatnet.org (1000+ projects)
- c) R&D needs not covered by existing programmes www.epobio.net and www.biofuelstp.eu
- d) Potential for cooperation at EU level and beyond www.epobio.net
- e) Non-technological barriers EU legislation and public opinion on GMOs See Attitudes Survery on www.epobio.net

Bioconversation Challenges

Bioconversion Challenges

PURE	MULTI-COMPONENT	COMBINED
Enzyme – e.g. Amylase	Enzyme - ???? 1	Culture + Enzyme
Culture – e.g. Yeast	Culture – e.g. AD/Compost	(SSF) – e.g. Ethanol

PRESENTATIONS 1.Artificial pathways 2.Refineries vs Biorefineries 3.Thermophilic enzymes 4.Biodegradable polymers 5.Pentose yeasts 6.Biogas

Lessons Learnt

Overcome increase cost due to:

ISSUE	Problem	
Poor yield	Unused substrate (waste)	1/4
Low specificity	Byproducts	6
Rate limitations (Q10)	Larger reactor/ Longer time	3
Inhibition	Poor performance	5
Death and decay	Need for replacement	1
Non-technological barriers	Need for clusters, partnerships & integration	2

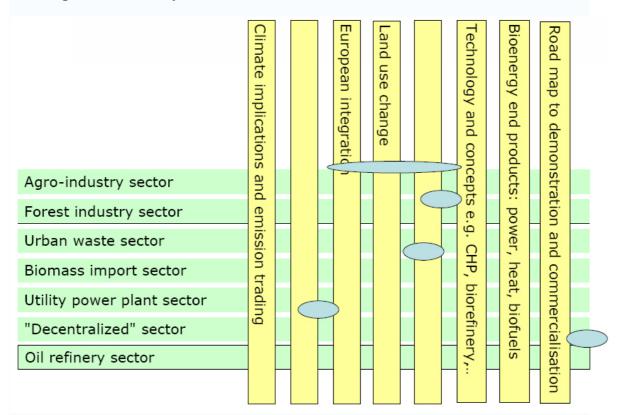
Session 3: Advances on thermochemical conversion

Existing technical bottlenecks and challenges related to the topic of the session

- upgrading of pyrolysis oils to a refinery feed and chemicals in laboratory, PDU and pilot scale (Solantausta)
- gas cleaning of black liquor gasification, scale up and long term demonstration to DME transportation fuels (Landälv)
- scale down of Fischer-Tropsch technology to Eutopean biomass market conditions, biomass based SNG production, polygeneration road maps (Rauch)
- transfer the fundimental studies of novel zeolite and restructured clays catalyst results to practical biomass concepts and practices (Tomlinson)
- bio-based polyurethane foams attractive bio-oils based products, challenges mainly to commercialize and market-consumer acceptance (Sleeckx)

The current R&D focus at EU level and in different EU countries

- 2nd generation biofuels is the key biomass RTD focus in the 7.FWP and several national programmes due to the targets given by the Biofuels Directive
- (in addition to electricity and heat generation from biomass)
- What is a constructive EU level and national balance of allocation of the public and private funds to applied research piloting demonstrations commercial scale actives in production and use of biofuels for transport?
- Materials and chemicals are attractive when giving additional revenue compared to next generation biofuels boosted by the Directive, what is the effective contribution?


R&D needs not covered by existing EC and MS programmes

- reliable feed stock supply will be crucial for the future large scale biorefinery industries. Additional system and cost studies. RTDD in the fuel supply is needed
- sustainability criteria's and investigattions should be done on EU level, global and national levels. Transparent and convincing methods, alternatives, results and recommendations needed
- Additional cost of biofuels and externatilities of fessil fuets, transparent results to citizens, stakeholders and policy makers
- sceaarios needed to combine various RES-options, For example how large portion the Biofuels Hydrogen fuels cells Non conventional fossil sources can cover in the future European transport road maps ? 20 % alternative fuels vs. Vision reports.

Non-technological barriers for the development of biorefineries

- the interaction and co-ordination between the four platforms presented in this conference? On EU and national level?
- the roadmaps to new RTD and demonstration projects co-funded by various EC Directorate generals and national programmes ?
- stronger connection needed to integrate market demand and industry commitment to demonstration and RTD, Focusing of PTDD actives in order to shorten the time to market penetration
- how to interact with the biofuels targets on short term 2010 and visions by 2030 and the targets of green chemistry, pulp and paper industry and white biotechnology markets?
- is there a risk for a hype without a good focus setting to numerous biorefinery options?
- will this lead to a "internal" competition for biomass?

Challenges of Biorefinery at various industrial Sectors

Session 4: Techno-economic and envigonmental analysis

Techno-economic aspacts

- Production of bulk chemicals from biomass saves more fossil energy than producing just energy from blomass
- Non-food products from biomass have to compete w«h subsidised bioenergy production
- The road to bio-based bulk chemicals is long because of both the cost and the state of technology
- Bio-based chemicals would better be produced for niche markets Instead

- The sum of the value of the parts is higher than the value of the whole (e.g. qrass, vegetable oil)
- Smalle-scale (pre)processing can give advantages over large scale processing (transportation cost, process integrations unsuitable for large scale)
- Taking new and innovative products to the markets is more difficult than the production itself (Death Valley Syndrome)
- Will there be enough raw material available also for food and feed if the use of biomass gains momentum in the energy and industrial sector?

Environmental aspects

- Low-quality (and unciltivated) land has significant potential for energy plantations (e.g. up to 30% in Eastern and Central Europe)
- Greenhouse gas reduction through substituting biofuels for fossil fuels:
 - Heat: 70-90%
 - Electricity & heat: 55-95%
 - Transportation: 55-80%
- The promise of biorefineries: advanced (2nd generation) biofuels have substantially lower GHG emission than conventional biofuels